-
2
-
-
0030987544
-
-
Liang, R.; Loebach, J.; Horan, N.; Ge, M.; Thompson, C.; Yan, L.; Kahne, D. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 10554.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 10554
-
-
Liang, R.1
Loebach, J.2
Horan, N.3
Ge, M.4
Thompson, C.5
Yan, L.6
Kahne, D.7
-
3
-
-
0032573844
-
-
Fujimoto, T.; Shimizu, C.; Hayashida, O.; Aoyama, Y. J. Am. Chem. Soc. 1998, 120, 601.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 601
-
-
Fujimoto, T.1
Shimizu, C.2
Hayashida, O.3
Aoyama, Y.4
-
6
-
-
0029870744
-
-
Mortell, K. H.; Weatherman, R. V.; Kiessling, L. J. Am. Chem. Soc. 1996, 118, 2297.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 2297
-
-
Mortell, K.H.1
Weatherman, R.V.2
Kiessling, L.3
-
7
-
-
0018385034
-
-
Williams, T. J.; Plessas, N. R.; Goldstein, I. J.; Lonngren, J. Arch. Biochem. Biophys. 1979, 195, 145.
-
(1979)
Arch. Biochem. Biophys.
, vol.195
, pp. 145
-
-
Williams, T.J.1
Plessas, N.R.2
Goldstein, I.J.3
Lonngren, J.4
-
8
-
-
0016702060
-
-
Lotan, R.; Skutelsky, E.; Danon, N. J. Biol. Chem. 1975, 250, 8518.
-
(1975)
J. Biol. Chem.
, vol.250
, pp. 8518
-
-
Lotan, R.1
Skutelsky, E.2
Danon, N.3
-
9
-
-
0028267231
-
-
(a) Merritt, E. A.; Sarfaty, S.; Vandenakker, F.; Lhoir, C.; Martial, J. A.; Hol, W. G. S. Protein Sci. 1994, 3, 166.
-
(1994)
Protein Sci.
, vol.3
, pp. 166
-
-
Merritt, E.A.1
Sarfaty, S.2
Vandenakker, F.3
Lhoir, C.4
Martial, J.A.5
Hol, W.G.S.6
-
10
-
-
0029885779
-
-
(b) Kuziemko, G. M.; Stroh, M.; Stevens, R. C. Biochemistry, 1996, 35, 6375.
-
(1996)
Biochemistry
, vol.35
, pp. 6375
-
-
Kuziemko, G.M.1
Stroh, M.2
Stevens, R.C.3
-
12
-
-
0001742636
-
-
(a) Song, X.; Nolan, J.; Swanson, B. I. J. Am. Chem. Soc. 1998, 120, 4873-4874.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 4873-4874
-
-
Song, X.1
Nolan, J.2
Swanson, B.I.3
-
13
-
-
0032508976
-
-
(b) Song, X.; Nolan, J.; Swanson, B. I. J. Am. Chem. Soc. 1998, 120, 11514-11515.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 11514-11515
-
-
Song, X.1
Nolan, J.2
Swanson, B.I.3
-
15
-
-
77956908681
-
-
Anpo, M., Matsuura, T., Ed.; Elsevier: New York
-
Zachariasse, K. A. In Photochemistry on Solid Surfaces; Anpo, M., Matsuura, T., Ed.; Elsevier: New York, 1989; p 48.
-
(1989)
Photochemistry on Solid Surfaces
, pp. 48
-
-
Zachariasse, K.A.1
-
16
-
-
0344975235
-
-
About 12% fluorescence self-quenching is observed for BF-GM1 in the outer leaflet of the POPC bilayer with comparable surface density when enough CT is added
-
About 12% fluorescence self-quenching is observed for BF-GM1 in the outer leaflet of the POPC bilayer with comparable surface density when enough CT is added.
-
-
-
-
17
-
-
0344112567
-
-
note
-
On one hand, the aggregation of the fluorescence acceptors induced by the multivalent binding reduces the energy transfer efficiency from the fluorescence donor to the acceptor so that the donor fluorescence increases and acceptor fluorescence decreases when only the donor is excited. The ratio of the donor fluorescence intensity over acceptor fluorescence intensity can be taken as one set of indicators for the presence of the multivalent protein. On the other hand, if the acceptor is excited, the acceptor fluorescence drops due to fluorescence self-quenching induced by the acceptor aggregation. The degree of the acceptor fluorescence quenching can also be taken as a set of parameters for the presence of the target protein. The self-quenching of the acceptor fluorescence induced by the aggregation should further reduce the energy transfer efficiency to boost the fluorescence response.
-
-
-
-
18
-
-
0344544260
-
-
See ref 12 for emission spectra of the pyrene monomer in organic solvents
-
See ref 12 for emission spectra of the pyrene monomer in organic solvents.
-
-
-
-
19
-
-
0345406572
-
-
note
-
The estimation is based on the following experimental data. A series of vesicle samples containing 0.5 μM POPC, 0.25 μM P-PC, and different concentrations of DABCY-GM1 (samples: (1)0 nM, (2) 5 nM, (3) 10 nM, (4) 20 nM, and (5) 40 nM) were prepared and their fluorescence spectra were measured. It was found that the fluorescence intensity of the samples 2-5 are ca. 70%, 52%, 33%, and 25% of the fluorescence intensity for the sample 1. Taking sample 2 as an example for estimation, each DABCY-GM1 can quench 30% fluorescence of ca. 50 pyrene molecules, which is equivalent to the fluorescenceof 15 pyrene molecules. Since approximately two-thirds of pyrenes form excimers, each DABCY-GM1 can quench the excimer fluorescence of 10 pyrene molecules.
-
-
-
-
20
-
-
0344112566
-
-
When the ratio of [POPC]/[P-PC] in the vesicles drops from 2/1 to 50/1, the relative intensity of the excimer fluorescence intensity to the monomer fluorescence intensity goes down from 2/1 to 50/1
-
When the ratio of [POPC]/[P-PC] in the vesicles drops from 2/1 to 50/1, the relative intensity of the excimer fluorescence intensity to the monomer fluorescence intensity goes down from 2/1 to 50/1.
-
-
-
-
21
-
-
0344975218
-
-
The absorption and emission spectra are identical in the presence and absence of the donor lipid in terms of spectral shape and spectral peaks. But the emission intensity in the presence of the donor lipid is lower than that without the donor lipid
-
The absorption and emission spectra are identical in the presence and absence of the donor lipid in terms of spectral shape and spectral peaks. But the emission intensity in the presence of the donor lipid is lower than that without the donor lipid.
-
-
-
|