메뉴 건너뛰기




Volumn 10, Issue 4, 1998, Pages 1007-1030

Efficient Adaptive Learning for Classification Tasks with Binary Units

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; CLASSIFICATION; LEARNING; REPRODUCIBILITY; STATISTICAL ANALYSIS;

EID: 0032523459     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976698300017601     Document Type: Article
Times cited : (9)

References (43)
  • 1
    • 0003761887 scopus 로고
    • Unpublished doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne, Switzerland
    • Alpaydin, E. A. I. (1990). Neural models of supervised and unsupervised learning. Unpublished doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
    • (1990) Neural Models of Supervised and Unsupervised Learning
    • Alpaydin, E.A.I.1
  • 2
    • 0012854245 scopus 로고
    • Tilinglike learning in the parity machine
    • Biehl, M., & Opper, M. (1991). Tilinglike learning in the parity machine. Physical Review A, 44, 6888.
    • (1991) Physical Review A , vol.44 , pp. 6888
    • Biehl, M.1    Opper, M.2
  • 3
    • 0000876414 scopus 로고
    • Local learning algorithms
    • Bottou, L., & Vapnik, V. (1992). Local learning algorithms. Neural Computation, 4(6), 888-900.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.2
  • 4
    • 0003495934 scopus 로고
    • (Tech. Rep. No. 421). Berkeley: Department of Statistics, University of California at Berkeley
    • Breiman, L. (1994). Bagging predictors (Tech. Rep. No. 421). Berkeley: Department of Statistics, University of California at Berkeley.
    • (1994) Bagging Predictors
    • Breiman, L.1
  • 8
    • 0002552358 scopus 로고
    • Improving performance in neural networks using a boosting algorithm
    • S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.) San Mateo, CA: Morgan Kaufmann
    • Drucker, H., Schapire, R., & Simard, P. (1993). Improving performance in neural networks using a boosting algorithm. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems, 5 (pp. 42-49). San Mateo, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 42-49
    • Drucker, H.1    Schapire, R.2    Simard, P.3
  • 9
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky (Ed.) San Mateo: Morgan Kaufmann
    • Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 524-532). San Mateo: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 10
    • 0346502477 scopus 로고
    • Speaker recognition using neural tree networks
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds.) San Mateo, CA: Morgan Kaufmann
    • Farrell, K. R., & Mammone, R. J. (1994). Speaker recognition using neural tree networks. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in Neural Information Processing Systems, 6 (pp. 1035-1042). San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 1035-1042
    • Farrell, K.R.1    Mammone, R.J.2
  • 11
    • 0000783575 scopus 로고
    • The Upstart algorithm: A method for constructing and training feedforward neural networks
    • Frean, M. (1990). The Upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation, 2(2), 198-209.
    • (1990) Neural Computation , vol.2 , Issue.2 , pp. 198-209
    • Frean, M.1
  • 12
    • 0007133880 scopus 로고
    • A "thermal" perceptronlearning rule
    • Frean, M. (1992). A "thermal" perceptronlearning rule. Neural Computation, 4(6), 946-957.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 946-957
    • Frean, M.1
  • 14
    • 0347763086 scopus 로고
    • Supervised learning with growing cell structures
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds.) San Mateo, CA: Morgan Kaufmann
    • Fritzke, B. (1994). Supervised learning with growing cell structures. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 255-262). San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 255-262
    • Fritzke, B.1
  • 17
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1), 1-58.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 18
    • 0000854380 scopus 로고
    • Rule-based neural networks for classification and probability estimation
    • Goodman, R. M., Smyth, P., Higgins, C. M., & Miller, J. W. (1992). Rule-based neural networks for classification and probability estimation. Neural Computation, 4(6), 781-804.
    • (1992) Neural Computation , vol.4 , Issue.6 , pp. 781-804
    • Goodman, R.M.1    Smyth, P.2    Higgins, C.M.3    Miller, J.W.4
  • 19
    • 0029768201 scopus 로고    scopus 로고
    • A convergence theorem for incremental learning with real-valued inputs
    • Gordon, M. B. (1996). A convergence theorem for incremental learning with real-valued inputs. In IEEE International Conference on Neural Networks, pp. 381-386.
    • (1996) IEEE International Conference on Neural Networks , pp. 381-386
    • Gordon, M.B.1
  • 20
    • 0012809439 scopus 로고
    • Minimerror: A perceptron learning rule that finds the optimal weights
    • M. Verleysen (Ed.) Brussels: D Facto
    • Gordon, M. B., & Berchier, D. (1993). Minimerror: A perceptron learning rule that finds the optimal weights. In M. Verleysen (Ed.), European Symposium on Artificial Neural Networks (pp. 105-110). Brussels: D Facto.
    • (1993) European Symposium on Artificial Neural Networks , pp. 105-110
    • Gordon, M.B.1    Berchier, D.2
  • 21
    • 84956263536 scopus 로고
    • Optimal learning with a temperature dependent algorithm
    • Gordon, M. B., & Grempel, D. (1995). Optimal learning with a temperature dependent algorithm. Europhysics Letters, 29(3), 257-262.
    • (1995) Europhysics Letters , vol.29 , Issue.3 , pp. 257-262
    • Gordon, M.B.1    Grempel, D.2
  • 22
    • 84956267329 scopus 로고
    • Learning algorithms for perceptrons from statistical physics
    • Gordon, M. B., Peretto, P., & Berchier, D. (1993). Learning algorithms for perceptrons from statistical physics. Journal of Physics I (France), 3, 377-387.
    • (1993) Journal of Physics I (France) , vol.3 , pp. 377-387
    • Gordon, M.B.1    Peretto, P.2    Berchier, D.3
  • 23
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • Gorman, R. P., & Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks, 1, 75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 24
    • 0002885302 scopus 로고
    • Statistical theory of learning a rule
    • W. K. Theumann & R. Koeberle (Eds.) Singapore: World Scientific
    • Gyorgyi, G., & Tishby, N. (1990). Statistical theory of learning a rule. In W. K. Theumann & R. Koeberle (Eds.), Neural networks and spin glasses. Singapore: World Scientific.
    • (1990) Neural Networks and Spin Glasses
    • Gyorgyi, G.1    Tishby, N.2
  • 26
    • 0003250435 scopus 로고
    • Single-layer learning revisited: A stepwise procedure for building and training a neural network
    • J. Hérault & F. Fogelman (Eds.) Berlin: Springer-Verlag
    • Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-layer learning revisited: A stepwise procedure for building and training a neural network. In J. Hérault & F. Fogelman (Eds.), Neurocomputing, algorithms, architectures and applications (pp. 41-50). Berlin: Springer-Verlag.
    • (1990) Neurocomputing, Algorithms, Architectures and Applications , pp. 41-50
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 27
    • 84956226983 scopus 로고
    • A convergence theorem for sequential learning in two-layer perceptrons
    • Marchand, M., Golea, M., & Ruján, P. (1990). A convergence theorem for sequential learning in two-layer perceptrons. Europhysics Letters, 11, 487-492.
    • (1990) Europhysics Letters , vol.11 , pp. 487-492
    • Marchand, M.1    Golea, M.2    Ruján, P.3
  • 28
    • 84956068504 scopus 로고
    • The offset algorithm: Building and learning method for multilayer neural networks
    • Martinez, D., & Estève, D. (1992). The offset algorithm: Building and learning method for multilayer neural networks. Europhysics Letters, 18, 95-100.
    • (1992) Europhysics Letters , vol.18 , pp. 95-100
    • Martinez, D.1    Estève, D.2
  • 29
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The Tiling algorithm
    • Mézard, M., & Nadal, J.-P. (1989). Learning in feedforward layered networks: The Tiling algorithm. J. Phys. A: Math. and Gen., 22, 2191-2203.
    • (1989) J. Phys. A: Math. and Gen. , vol.22 , pp. 2191-2203
    • Mézard, M.1    Nadal, J.-P.2
  • 30
    • 0042474533 scopus 로고
    • A polynomial time algorithm for generating neural networks for pattern classification: Its stability properties and some test results
    • Mukhopadhyay, S., Roy, A., Kim, L. S., & Govil, S. (1993). A polynomial time algorithm for generating neural networks for pattern classification: Its stability properties and some test results. Neural Computation, 5(2), 317-330.
    • (1993) Neural Computation , vol.5 , Issue.2 , pp. 317-330
    • Mukhopadhyay, S.1    Roy, A.2    Kim, L.S.3    Govil, S.4
  • 31
    • 0001958391 scopus 로고
    • Study of a growth algorithm for a feedforward neural network
    • Nadal, J.-P. (1989). Study of a growth algorithm for a feedforward neural network. Int. J. Neur. Syst., 1, 55-59.
    • (1989) Int. J. Neur. Syst. , vol.1 , pp. 55-59
    • Nadal, J.-P.1
  • 33
    • 0029411591 scopus 로고
    • Learning and generalization with Minimerror, a temperature dependent learning algorithm
    • Raffin, B., & Gordon, M. B. (1995). Learning and generalization with Minimerror, a temperature dependent learning algorithm. Neural Computation, 7(6), 1206-1224.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1206-1224
    • Raffin, B.1    Gordon, M.B.2
  • 35
    • 0027259956 scopus 로고
    • A polynomial time algorithm for the construction and training of a class of multilayer perceptron
    • Roy, A., Kim, L., & Mukhopadhyay, S. (1993). A polynomial time algorithm for the construction and training of a class of multilayer perceptron. Neural Networks, 6(1), 535-545.
    • (1993) Neural Networks , vol.6 , Issue.1 , pp. 535-545
    • Roy, A.1    Kim, L.2    Mukhopadhyay, S.3
  • 36
    • 1542639878 scopus 로고
    • Neural trees: A new tool for classification
    • Sirat, J. A., & Nadal, J.-P. (1990). Neural trees: A new tool for classification. Network, 1, 423-438.
    • (1990) Network , vol.1 , pp. 423-438
    • Sirat, J.A.1    Nadal, J.-P.2
  • 37
    • 0010266979 scopus 로고
    • Learning and generalization in layered neural networks: The contiguity problem
    • L. Personnaz & G. Dreyfus (Eds.) Paris: I.D.S.E.T.
    • Solla, S. A. (1989). Learning and generalization in layered neural networks: The contiguity problem. In L. Personnaz & G. Dreyfus (Eds.), Neural Networks from Models to Applications. Paris: I.D.S.E.T.
    • (1989) Neural Networks from Models to Applications
    • Solla, S.A.1
  • 38
    • 0012838621 scopus 로고
    • An evolutive architecture coupled with optimal perceptron learning for classification
    • M. Verleysen (Ed.) Brussels: D Facto
    • Torres Moreno, J.-M., & Gordon, M. B. (1995). An evolutive architecture coupled with optimal perceptron learning for classification. In M. Verleysen (Ed.), European Symposium on Artificial Neural Networks. Brussels: D Facto.
    • (1995) European Symposium on Artificial Neural Networks
    • Torres Moreno, J.-M.1    Gordon, M.B.2
  • 39
    • 0031992026 scopus 로고    scopus 로고
    • Characterization of the sonar signals benchmark
    • Torres Moreno, J.-M., & Gordon, M. B. (1998). Characterization of the sonar signals benchmark. Neural Proc. Letters, 7(1), 1-4.
    • (1998) Neural Proc. Letters , vol.7 , Issue.1 , pp. 1-4
    • Torres Moreno, J.-M.1    Gordon, M.B.2
  • 41
    • 0040864988 scopus 로고
    • Principles of risk minimization for learning theory
    • J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.) San Mateo, CA: Morgan Kaufmann
    • Vapnik, V. (1992). Principles of risk minimization for learning theory. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems, 4 (pp. 831-838). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 831-838
    • Vapnik, V.1
  • 42
    • 0346502480 scopus 로고
    • A new algorithm for feedforward neural networks
    • M. Verleysen (Ed.) Brussels: D Facto
    • Verma, B. K., & Mulawka, J. J. (1995). A new algorithm for feedforward neural networks. In M. Verleysen (Ed.), European Symposium on Artificial Neural Networks (pp. 359-364). Brussels: D Facto.
    • (1995) European Symposium on Artificial Neural Networks , pp. 359-364
    • Verma, B.K.1    Mulawka, J.J.2
  • 43
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology
    • Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In Proceedings of the National Academy of Sciences, USA, 87, 9193-9196.
    • (1990) Proceedings of the National Academy of Sciences, USA , vol.87 , pp. 9193-9196
    • Wolberg, W.H.1    Mangasarian, O.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.