-
2
-
-
0342705993
-
-
D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazque, and R. Beyers, Nature (London) 363, 605 (1993).
-
(1993)
Nature (London)
, vol.363
, pp. 605
-
-
Bethune, D.S.1
Kiang, C.H.2
De Vries, M.S.3
Gorman, G.4
Savoy, R.5
Vazque, J.6
Beyers, R.7
-
3
-
-
6444244907
-
-
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).
-
(1996)
Science
, vol.273
, pp. 483
-
-
Thess, A.1
Lee, R.2
Nikolaev, P.3
Dai, H.4
Petit, P.5
Robert, J.6
Xu, C.7
Lee, Y.H.8
Kim, S.G.9
Rinzler, A.G.10
Colbert, D.T.11
Scuseria, G.E.12
Tomanek, D.13
Fischer, J.E.14
Smalley, R.E.15
-
4
-
-
0000154676
-
-
A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 4737
-
-
Loiseau, A.1
Willaime, F.2
Demoncy, N.3
Hug, G.4
Pascard, H.5
-
5
-
-
0030582253
-
-
M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Ramos, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett. 259, 568 (1996).
-
(1996)
Chem. Phys. Lett.
, vol.259
, pp. 568
-
-
Terrones, M.1
Hsu, W.K.2
Terrones, H.3
Zhang, J.P.4
Ramos, S.5
Hare, J.P.6
Castillo, R.7
Prassides, K.8
Cheetham, A.K.9
Kroto, H.W.10
Walton, D.R.M.11
-
6
-
-
0028769665
-
-
O. Stephan, P. M. Ajayan, C. Colliex, Ph. Redich, J. M. Lambert, P. Bernier, and P. Lefin, Science 266, 1683 (1994).
-
(1994)
Science
, vol.266
, pp. 1683
-
-
Stephan, O.1
Ajayan, P.M.2
Colliex, C.3
Redich, Ph.4
Lambert, J.M.5
Bernier, P.6
Lefin, P.7
-
7
-
-
0031582962
-
-
Y. Zhang, H. Gu, K. Suenaga, and S. Iijima, Chem. Phys. Lett. 279, 264 (1997).
-
(1997)
Chem. Phys. Lett.
, vol.279
, pp. 264
-
-
Zhang, Y.1
Gu, H.2
Suenaga, K.3
Iijima, S.4
-
9
-
-
0028513869
-
-
Z. Ren, Y. Du, Z. Ying, Y. Qiu, X. Xiong, J. Wu, and F. Li, Appl. Phys. Lett. 65, 1361 (1994).
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 1361
-
-
Ren, Z.1
Du, Y.2
Ying, Z.3
Qiu, Y.4
Xiong, X.5
Wu, J.6
Li, F.7
-
10
-
-
51149218763
-
-
X.-A. Zhao, C. W. Ong, Y. C. Tsang, Y. W. Wong, P. W. Chan, and C. L. Choy, Appl. Phys. Lett. 66, 2652 (1995).
-
(1995)
Appl. Phys. Lett.
, vol.66
, pp. 2652
-
-
Zhao, X.-A.1
Ong, C.W.2
Tsang, Y.C.3
Wong, Y.W.4
Chan, P.W.5
Choy, C.L.6
-
11
-
-
0029732371
-
-
J. M. Jones, R. P. Malcolm, K. M. Thomas, and S. H. Bottrell, Carbon 34, 231 (1996).
-
(1996)
Carbon
, vol.34
, pp. 231
-
-
Jones, J.M.1
Malcolm, R.P.2
Thomas, K.M.3
Bottrell, S.H.4
-
14
-
-
21944456891
-
-
We did observe some elongated graphite polyhedrons in a few occasions, but their aspect ratios are very small, usually less than 3. We have the similar result in the experiment using argon gas (see Ref. 13)
-
We did observe some elongated graphite polyhedrons in a few occasions, but their aspect ratios are very small, usually less than 3. We have the similar result in the experiment using argon gas (see Ref. 13).
-
-
-
-
15
-
-
0003394101
-
-
Such systematic variation can only be corrected to a certain degree in a 1D detector array using a standard correction method; however, using an energy shifted first-difference spectrum acquisition mode can remove this artifact almost completely. See Plenum, New York
-
Such systematic variation can only be corrected to a certain degree in a 1D detector array using a standard correction method; however, using an energy shifted first-difference spectrum acquisition mode can remove this artifact almost completely. See F. R. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1996).
-
(1996)
Electron Energy-Loss Spectroscopy in the Electron Microscope
-
-
Egerton, F.R.1
-
16
-
-
21944443170
-
-
It holds only if the peak shapes of the normal spectra are similar. Since the K-edge intensity is decided by the p-projected density of electron states, it requires that the bonding nature of nitrogen does not change significantly
-
It holds only if the peak shapes of the normal spectra are similar. Since the K-edge intensity is decided by the p-projected density of electron states, it requires that the bonding nature of nitrogen does not change significantly.
-
-
-
-
17
-
-
21944445948
-
-
The difference in the noise levels of spectra (c) and (d) is caused by the different specimen thickness of the scanned regions. At a thin region, such as the thin SWCNT bundle for spectrum (c), the total number of atoms contributing to inelastic scattering is smaller and the statistic error is larger within a fixed acquisition time
-
The difference in the noise levels of spectra (c) and (d) is caused by the different specimen thickness of the scanned regions. At a thin region, such as the thin SWCNT bundle for spectrum (c), the total number of atoms contributing to inelastic scattering is smaller and the statistic error is larger within a fixed acquisition time.
-
-
-
-
18
-
-
0004173989
-
-
The bond energies of C-C and C-N are 370 and 305 kJ/mol, respectively Noyes, New Jersey This assumption is also supported by the fact that high temperature is preferred for fullerene formation (see Ref. 13)
-
The bond energies of C-C and C-N are 370 and 305 kJ/mol, respectively; H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes, New Jersey, 1993), p. 32. This assumption is also supported by the fact that high temperature is preferred for fullerene formation (see Ref. 13).
-
(1993)
Handbook of Carbon, Graphite, Diamond and Fullerenes
, pp. 32
-
-
Pierson, H.O.1
|