-
1
-
-
0000731210
-
-
a) A. Klug, Angew. Chem. 1983, 95, 579-596; Angew. Chem. Int. Ed. Engl. 1983, 22, 565-582;
-
(1983)
Angew. Chem.
, vol.95
, pp. 579-596
-
-
Klug, A.1
-
2
-
-
84985631191
-
-
a) A. Klug, Angew. Chem. 1983, 95, 579-596; Angew. Chem. Int. Ed. Engl. 1983, 22, 565-582;
-
(1983)
Angew. Chem. Int. Ed. Engl.
, vol.22
, pp. 565-582
-
-
-
3
-
-
0000633029
-
-
b) D. Philp, J. F. Stoddart, ibid. 1996, 108, 1242-1286 and 1996, 35, 1154-1196.
-
(1996)
Angew. Chem. Int. Ed. Engl.
, vol.108
, pp. 1242-1286
-
-
Philp, D.1
Stoddart, J.F.2
-
4
-
-
0029811409
-
-
b) D. Philp, J. F. Stoddart, ibid. 1996, 108, 1242-1286 and 1996, 35, 1154-1196.
-
(1996)
Angew. Chem. Int. Ed. Engl.
, vol.35
, pp. 1154-1196
-
-
-
5
-
-
0000409230
-
-
a) J.-M. Lehn, Angew. Chem. 1990, 102, 1347-1362; Angew. Chem. Int. Ed. Engl. 1990, 29, 1304-1319;
-
(1990)
Angew. Chem.
, vol.102
, pp. 1347-1362
-
-
Lehn, J.-M.1
-
6
-
-
0025668818
-
-
a) J.-M. Lehn, Angew. Chem. 1990, 102, 1347-1362; Angew. Chem. Int. Ed. Engl. 1990, 29, 1304-1319;
-
(1990)
Angew. Chem. Int. Ed. Engl.
, vol.29
, pp. 1304-1319
-
-
-
9
-
-
0000933702
-
-
d) J. A. Zeriowski, C. T. Seto, G. M. Whitesides, ibid. 1992, 114, 5473-5475;
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 5473-5475
-
-
Zeriowski, J.A.1
Seto, C.T.2
Whitesides, G.M.3
-
11
-
-
0000999497
-
-
f) A. Harada, K. Li, M. Kamachi, ibid. 1994, 116, 3192-3196;
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 3192-3196
-
-
Harada, A.1
Li, K.2
Kamachi, M.3
-
12
-
-
0028470874
-
-
g) A. Harada, K. Li, M. Kamachi, Nature 1994, 370, 126-128.
-
(1994)
Nature
, vol.370
, pp. 126-128
-
-
Harada, A.1
Li, K.2
Kamachi, M.3
-
13
-
-
0002259505
-
-
a) P. R. Ashton, J. Huff, S. Menzer, I. W. Parsons, J. A. Preece, J. F. Stoddart, M. S. Tolley, A. J. P. White, D. J. Williams, Chem. Eur. J. 1996, 2, 31-44;
-
(1996)
Chem. Eur. J.
, vol.2
, pp. 31-44
-
-
Ashton, P.R.1
Huff, J.2
Menzer, S.3
Parsons, I.W.4
Preece, J.A.5
Stoddart, J.F.6
Tolley, M.S.7
White, A.J.P.8
Williams, D.J.9
-
14
-
-
0000597680
-
-
b) M. Asakawa, P. R. Ashton, S. Menzer, F. M. Raymo, J. F. Stoddart, A. J. P. White, D. J. Williams, ibid. 1996, 2, 877-893;
-
(1996)
Chem. Eur. J.
, vol.2
, pp. 877-893
-
-
Asakawa, M.1
Ashton, P.R.2
Menzer, S.3
Raymo, F.M.4
Stoddart, J.F.5
White, A.J.P.6
Williams, D.J.7
-
15
-
-
0030893291
-
-
c) D. P. Funeriu, J.-M. Lehn, G. Baum, D. Fenske, ibid. 1997, 3, 99-104;
-
(1997)
Chem. Eur. J.
, vol.3
, pp. 99-104
-
-
Funeriu, D.P.1
Lehn, J.-M.2
Baum, G.3
Fenske, D.4
-
16
-
-
0031011963
-
-
d) P. R. Ashton, S. E. Boyd, D. G. Claessens, R. E. Gillard, S. Menzer, J. F. Stoddart, M. S. Tolley, A. J. P. White, D. J. Williams, ibid. 1997, 3, 788-798;
-
(1997)
Chem. Eur. J.
, vol.3
, pp. 788-798
-
-
Ashton, P.R.1
Boyd, S.E.2
Claessens, D.G.3
Gillard, R.E.4
Menzer, S.5
Stoddart, J.F.6
Tolley, M.S.7
White, A.J.P.8
Williams, D.J.9
-
18
-
-
0030979932
-
-
f) P. R. Ashton, R. Ballardini, V. Balzani, S. E. Boyd, A. Credi, M. T. Gandolfi, M. Gómez-López, S. Iqbal, D. Philp, J. A. Preece, L. Prodi, H. G. Ricketts, J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White, D. J. Williams, ibid. 1997, 3, 152-170.
-
(1997)
Chem. Eur. J.
, vol.3
, pp. 152-170
-
-
Ashton, P.R.1
Ballardini, R.2
Balzani, V.3
Boyd, S.E.4
Credi, A.5
Gandolfi, M.T.6
Gómez-López, M.7
Iqbal, S.8
Philp, D.9
Preece, J.A.10
Prodi, L.11
Ricketts, H.G.12
Stoddart, J.F.13
Tolley, M.S.14
Venturi, M.15
White, A.J.P.16
Williams, D.J.17
-
19
-
-
33845553763
-
-
For the self-organization of a monosubstituted β-cyclodextrin to a polymeric array in the solid state where the tert-butylsulfonyl group is intermolecularly included in the cavity of the cyclodextrin, sec : K. Hirotsu, T. Higuchi, K. Fujita, T. Ueda, A. Shinoda, T. Imoto, I. Tabushi, J. Org. Chem. 1982, 47, 1143-1144. Indeed, as early as 1977 Cram et al. suggested the formation of polymeric species by complexation of bis(crown ethers) and α,ω-diammonium salts: R. C. Helgeson, T. L. Tarnowski, J. M. Timko, D. J. Cram, J. Am. Chem. Soc. 1977, 99, 6411-6418.
-
(1982)
J. Org. Chem.
, vol.47
, pp. 1143-1144
-
-
Hirotsu, K.1
Higuchi, T.2
Fujita, K.3
Ueda, T.4
Shinoda, A.5
Imoto, T.6
Tabushi, I.7
-
20
-
-
0000341325
-
-
For the self-organization of a monosubstituted β-cyclodextrin to a polymeric array in the solid state where the tert-butylsulfonyl group is intermolecularly included in the cavity of the cyclodextrin, sec : K. Hirotsu, T. Higuchi, K. Fujita, T. Ueda, A. Shinoda, T. Imoto, I. Tabushi, J. Org. Chem. 1982, 47, 1143-1144. Indeed, as early as 1977 Cram et al. suggested the formation of polymeric species by complexation of bis(crown ethers) and α,ω-diammonium salts: R. C. Helgeson, T. L. Tarnowski, J. M. Timko, D. J. Cram, J. Am. Chem. Soc. 1977, 99, 6411-6418.
-
(1977)
J. Am. Chem. Soc.
, vol.99
, pp. 6411-6418
-
-
Helgeson, R.C.1
Tarnowski, T.L.2
Timko, J.M.3
Cram, D.J.4
-
21
-
-
0001532172
-
-
H. W. Gibson, D. S. Nagvekar, N. Yamaguchi, F. Wang, W. S. Bryant, J. Org. Chem. 1997, 62, 4798-4803.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 4798-4803
-
-
Gibson, H.W.1
Nagvekar, D.S.2
Yamaguchi, N.3
Wang, F.4
Bryant, W.S.5
-
22
-
-
0344278548
-
-
note
-
o, p was calculated.
-
-
-
-
23
-
-
0345140949
-
-
note
-
1H NMR data.
-
-
-
-
24
-
-
0345572510
-
-
f
-
f.
-
-
-
-
25
-
-
0003495893
-
-
Wiley, New York
-
The expression n=1/(1-p) assumes that the cyclic species do not contribute to consumption of host and guest sites. In covalent polymer chemistry it is well understood that the percentage of cyclic molecules of any size formed at high concentrations (e.g., 1.0M) is very small indeed (<3%) and that linear macromolecules are preferentially formed. For reviews on cyclization versus linear polymerization, see: a) G. Odian, Principles of Polymerization, 3rd ed., Wiley, New York, 1991, p. 73; b) S. C. Hamilton, J. A. Semlyen, Polymer. 1997, 38, 1685-1691. Therefore, the assumption that the absence of cyclic complexes dramatically increases with concentration is validated.
-
(1991)
Principles of Polymerization, 3rd Ed.
, pp. 73
-
-
Odian, G.1
-
26
-
-
0031095926
-
-
The expression n=1/(1-p) assumes that the cyclic species do not contribute to consumption of host and guest sites. In covalent polymer chemistry it is well understood that the percentage of cyclic molecules of any size formed at high concentrations (e.g., 1.0M) is very small indeed (<3%) and that linear macromolecules are preferentially formed. For reviews on cyclization versus linear polymerization, see: a) G. Odian, Principles of Polymerization, 3rd ed., Wiley, New York, 1991, p. 73; b) S. C. Hamilton, J. A. Semlyen, Polymer. 1997, 38, 1685-1691. Therefore, the assumption that the absence of cyclic complexes dramatically increases with concentration is validated.
-
(1997)
Polymer.
, vol.38
, pp. 1685-1691
-
-
Hamilton, S.C.1
Semlyen, J.A.2
-
27
-
-
0004247617
-
-
Van Nostrand, New York
-
S. Glasstone, D. Lewis, Elements of Physical Chemistry, 2nd ed., Van Nostrand, New York, 1960, pp. 597-598.
-
(1960)
Elements of Physical Chemistry, 2nd Ed.
, pp. 597-598
-
-
Glasstone, S.1
Lewis, D.2
-
28
-
-
0345140950
-
-
note
-
Not surprisingly, fibers could be pulled from very concentrated solutions in acetone (>2.0.M). This observation is indicative of significant linear array extension in the material, consequently giving rise to polymeric properties.
-
-
-
-
30
-
-
0000101176
-
-
b) G. Hild, C. Strazielle, P. Rempp, Eur. Polym. J., 1983, 19, 721-727.
-
(1983)
Eur. Polym. J.
, vol.19
, pp. 721-727
-
-
Hild, G.1
Strazielle, C.2
Rempp, P.3
-
31
-
-
0345140948
-
-
note
-
g observed at -20°C down to slightly above the freezing temperature of the solvent (-94°C) were unchanged at δ-5.944 and 5.862, which correspond to n values of 4.3 and 14, respectively.
-
-
-
-
32
-
-
0344278545
-
-
note
-
+, respectively.
-
-
-
|