메뉴 건너뛰기




Volumn 281, Issue 5384, 1998, Pages 1863-1866

Promotion of dendritic growth by CPG15, an activity-induced signaling molecule

Author keywords

[No Author keywords available]

Indexed keywords

BETA GALACTOSIDASE; CELL SURFACE PROTEIN; GLYCOSYLPHOSPHATIDYLINOSITOL; GROWTH PROMOTOR;

EID: 0032544299     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.281.5384.1863     Document Type: Article
Times cited : (183)

References (39)
  • 4
    • 0029877970 scopus 로고    scopus 로고
    • Tissue samples from stage 46-48 tadpoles were homogenized as described [D.-J. Zou and H. T. Cline, Neuron 16, 529 (1996)] and size-separated on 15% SDS/tris-glycine gels before electroblotting onto nitrocellulose. Blots were incubated with a 1:100 dilution of unpurified anti-CPG15 or preimmune antisera and developed by ECL (Amersham). Polyclonal antiserum to CPG15 was generated in rabbits by Pocono Rabbit Farm and Laboratory against a FLAG fusion protein (Kodak) expressed in Escherichia coli BL21 and was purified by established methods [J. Sambrook, E. F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989)].
    • (1996) Neuron , vol.16 , pp. 529
    • Zou, D.-J.1    Cline, H.T.2
  • 5
    • 0004136246 scopus 로고
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Tissue samples from stage 46-48 tadpoles were homogenized as described [D.-J. Zou and H. T. Cline, Neuron 16, 529 (1996)] and size-separated on 15% SDS/tris-glycine gels before electroblotting onto nitrocellulose. Blots were incubated with a 1:100 dilution of unpurified anti-CPG15 or preimmune antisera and developed by ECL (Amersham). Polyclonal antiserum to CPG15 was generated in rabbits by Pocono Rabbit Farm and Laboratory against a FLAG fusion protein (Kodak) expressed in Escherichia coli BL21 and was purified by established methods [J. Sambrook, E. F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989)].
    • (1989) Molecular Cloning: A Laboratory Manual
    • Sambrook, J.1    Fritsch, E.F.2    Maniatis, T.3
  • 6
    • 3543056584 scopus 로고    scopus 로고
    • note
    • KA was injected into the tadpole optic ventricle (50 μM). Intraperitoneal (ip) injection of KA into rats and subsequent removal of hippocampal dentate gyri were done as described (1).
  • 9
    • 3543126755 scopus 로고    scopus 로고
    • note
    • Stage 46-48 tadpoles were fixed in 4% paraformaldehyde, and their brains were dissected and cut into 30-μm horizontal cryostat sections. Sections were incubated with preimmune serum or antiserum to CPG15 at a 1:200 dilution and visualized with fluorescein isothiocyanate-tagged goat anti-rabbit (Sigma). Sections from virally infected animals were double-labeled with antiserum to CPG15 as above and antiserum to β-gal (Sigma) visualized with a Cy5-tagged secondary antibody.
  • 12
    • 0003527698 scopus 로고
    • IRL Press, Oxford
    • 8 plaque forming units), was mixed with 0.1% Fast Green, and 100 to 150 nl were injected into the tectal ventricle of anesthetized stage 46-48 [P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin) (ELsevier-North Holland, Amsterdam, 1956)] albino Xenopus laevis tadpoles. After recovering from anesthesia, animals were kept at room temperature for 2 days, when tectal neurons were labeled and imaging began. β-gal immunohistochemistry showed that levels of infection ranged from 20 to 50% of tectal neurons and that both neurons and radial glia were infected.
    • (1985) DNA Cloning: A Practical Approach
    • Mackett, M.1    Smith, G.L.2    Moss, B.3
  • 13
    • 0028579743 scopus 로고
    • 8 plaque forming units), was mixed with 0.1% Fast Green, and 100 to 150 nl were injected into the tectal ventricle of anesthetized stage 46-48 [P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin) (ELsevier-North Holland, Amsterdam, 1956)] albino Xenopus laevis tadpoles. After recovering from anesthesia, animals were kept at room temperature for 2 days, when tectal neurons were labeled and imaging began. β-gal immunohistochemistry showed that levels of infection ranged from 20 to 50% of tectal neurons and that both neurons and radial glia were infected.
    • (1994) Science , vol.266 , pp. 1881
    • Pettit, D.L.1    Perlman, S.2    Malinow, R.3
  • 14
    • 0003478757 scopus 로고
    • ELsevier-North Holland, Amsterdam
    • 8 plaque forming units), was mixed with 0.1% Fast Green, and 100 to 150 nl were injected into the tectal ventricle of anesthetized stage 46-48 [P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin) (ELsevier-North Holland, Amsterdam, 1956)] albino Xenopus laevis tadpoles. After recovering from anesthesia, animals were kept at room temperature for 2 days, when tectal neurons were labeled and imaging began. β-gal immunohistochemistry showed that levels of infection ranged from 20 to 50% of tectal neurons and that both neurons and radial glia were infected.
    • (1956) Normal Table of Xenopus Laevis (Daudin)
    • Nieuwkoop, P.D.1    Faber, J.2
  • 15
    • 3543150306 scopus 로고    scopus 로고
    • note
    • 18(S) or 1,1′-dioctadecyl-3,3,3′3′-tert-methylindocarbocyanine perchlorate, Molecular Probes; 0.05% in absolute ethanol] using 1 to 10 nA positive current applied in three to five pulses of 1 to 10 ms duration. DiL was injected at different positions along the rostrocaudal axis of the tectum to label cells at a range of developmental stages. Mapping the positions of labeled cells within the tectum during the imaging sessions verified that injection sites for alt groups tested were within the same range along the rostrocaudal axis. Viral infections, dye labeling, screening, and imaging were done while animals were anesthetized with 0.02% 3-aminobenzoic acid ethyl ester (MS222, Sigma) in Steinberg's solution. Animals were screened for those with single or well-isolated brightly labeled tectal cells. The first image of each series was taken 1 to 2 hours after dye labeling.
  • 16
    • 3543147956 scopus 로고    scopus 로고
    • note
    • Cells were imaged and analyzed as previously described (10). Cell drawings and measurements were done blind to the experimental treatment. Statistical significance was determined by two-tailed t-test.
  • 17
    • 3543115176 scopus 로고    scopus 로고
    • Supporting documentation and figures are available via the Science Web site
    • Supporting documentation and figures are available via the Science Web site at www.sciencemag.org/ feature/data/982664.shl.
  • 18
    • 0022620546 scopus 로고
    • Cells with axons that were observed to exit the tectum were designated projection neurons. Interneurons were identified as neurons without an axonal projection exiting the tectum. Distinctions were possible because of the effort made during imaging to confirm the end point of any process extending beyond the range of the dendritic arbor (ambiguous cells were rejected from analysis). A second criterion to identify interneurons was their morphological similarity to previously defined interneurons of two types. One type has a pear-shaped cell body with a dendritic arbor similar to that of projection neurons and a short axon included within the dendritic field (Fig. 4). This type of cell is simiLar to interneurons described by M. Antal, N. Matsumoto, and G. Szekely [J. Comp. Neurol. 246, 238 (1986)]. The second type of interneuron is multipolar with a densely branched arbor (14). These cells resemble the T5(3) subclass of large asymmetric ganglionic neurons described as possible interneurons in a framework of lateral inhibition [N. Matsumoto, W. W. Schwippert, J.-P. Ewert, J. Comp. Physiol. 159, 721 (1986)].
    • (1986) J. Comp. Neurol. , vol.246 , pp. 238
    • Antal, M.1    Matsumoto, N.2    Szekely, G.3
  • 19
    • 0001344851 scopus 로고
    • Cells with axons that were observed to exit the tectum were designated projection neurons. Interneurons were identified as neurons without an axonal projection exiting the tectum. Distinctions were possible because of the effort made during imaging to confirm the end point of any process extending beyond the range of the dendritic arbor (ambiguous cells were rejected from analysis). A second criterion to identify interneurons was their morphological similarity to previously defined interneurons of two types. One type has a pear-shaped cell body with a dendritic arbor similar to that of projection neurons and a short axon included within the dendritic field (Fig. 4). This type of cell is simiLar to interneurons described by M. Antal, N. Matsumoto, and G. Szekely [J. Comp. Neurol. 246, 238 (1986)]. The second type of interneuron is multipolar with a densely branched arbor (14). These cells resemble the T5(3) subclass of large asymmetric ganglionic neurons described as possible interneurons in a framework of lateral inhibition [N. Matsumoto, W. W. Schwippert, J.-P. Ewert, J. Comp. Physiol. 159, 721 (1986)].
    • (1986) J. Comp. Physiol. , vol.159 , pp. 721
    • Matsumoto, N.1    Schwippert, W.W.2    Ewert, J.-P.3
  • 20
    • 3543105727 scopus 로고    scopus 로고
    • note
    • To identify neurons that were both labeled with Dil and infected with CPG15VV, we labeled cells with chloromethylated Dil (Molecular Probes) and imaged them in vivo, as described above. After two images were obtained (at 24-hour intervals), animals were fixed in 4% paraformaldehyde with 0.1% glutaraldehyde. Cell morphology was reconstructed from the images collected in vivo. TDBL and growth rate were determined as described (10). For those animals with neurons exhibiting the "outlier" phenotype, brains were dissected and sections were prepared as described (8). Sections were then incubated with monoclonal antibody to β-gal (Sigma) and subsequently with Cy5-tagged goat anti-mouse Fab fragment (Jackson). After immunostaining, the single Dil-labeled cell in each animal was identified, and images of the appropriate sections were collected at dual wavelengths on a Noran confocal microscope equipped with a krypton/argon laser to assess whether the Dil-labeled neurons (visualized at 488 nm) were immunoreactive for β-gal (visualized at 647 nm).
  • 24
    • 0028067458 scopus 로고
    • H.-J. Cheng and J. G. Flanagan, Cell 79, 157 (1994); U. Drescher et al., ibid. 82, 359 (1995); M. Nakamoto et al., ibid. 86, 755 (1996).
    • (1994) Cell , vol.79 , pp. 157
    • Cheng, H.-J.1    Flanagan, J.G.2
  • 25
    • 0029082312 scopus 로고
    • H.-J. Cheng and J. G. Flanagan, Cell 79, 157 (1994); U. Drescher et al., ibid. 82, 359 (1995); M. Nakamoto et al., ibid. 86, 755 (1996).
    • (1995) Cell , vol.82 , pp. 359
    • Drescher, U.1
  • 26
    • 0030572695 scopus 로고    scopus 로고
    • H.-J. Cheng and J. G. Flanagan, Cell 79, 157 (1994); U. Drescher et al., ibid. 82, 359 (1995); M. Nakamoto et al., ibid. 86, 755 (1996).
    • (1996) Cell , vol.86 , pp. 755
    • Nakamoto, M.1
  • 27
    • 0028110068 scopus 로고
    • S. Davis et al., Science 266, 816 (1994).
    • (1994) Science , vol.266 , pp. 816
    • Davis, S.1
  • 28
    • 3543063692 scopus 로고    scopus 로고
    • note
    • The CPG15t3VV was prepared similarly to CPG15VV (11) by subcloning a fragment of rat cpg15 cDNA starting at the same site as the CPG15VV insert and extending 355 base pairs until amino acid 115 in the coding region, therefore excluding the CPG15 GPI consensus region.
  • 29
    • 0025275842 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1990) Annu. Rev. Neurosci. , vol.13 , pp. 129
    • Constantine-Paton, M.1    Cline, H.T.2    Debski, E.3
  • 30
    • 0025644363 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1990) Neuron , vol.5 , pp. 745
    • Shatz, C.J.1
  • 31
    • 0027351577 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1993) Cell (Suppl.) , vol.72 , pp. 77
    • Goodman, C.S.1    Shatz, C.J.2
  • 32
    • 0020450747 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1982) J. Comp. Neurol. , vol.211 , pp. 353
    • Tieman, S.B.1    Hirsch, H.V.B.2
  • 33
    • 0023795432 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1988) J. Neurosci. , vol.8 , pp. 3160
    • Katz, L.C.1    Constantine-Paton, M.2
  • 34
    • 0025807171 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1991) J. Comp. Neurol. , vol.309 , pp. 129
    • Lund, J.S.1    Holbach, S.M.2    Chung, W.-W.3
  • 35
    • 0025936267 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1991) J. Neurobiol. , vol.22 , pp. 685
    • Wong, R.O.L.1    Herrmann, K.2    Shatz, C.J.3
  • 36
    • 0027171779 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1993) Nature , vol.364 , pp. 144
    • Bodnarenko, S.R.1    Chalupa, L.M.2
  • 37
    • 0029025868 scopus 로고
    • M. Constantine-Paton, H. T. Cline, E. Debski, Annu. Rev. Neurosci. 13, 129 (1990); C. J. Shatz, Neuron 5, 745 (1990); C. S. Goodman and C. J. Shatz, Cell (suppl.) 72, 77 (1993); S. B. Tieman and H. V. B. Hirsch, J. Comp. Neurol. 211, 353 (1982); L. C. Katz and M. Constantine-Paton, J. Neurosci. 8, 3160 (1988); J. S. Lund, S. M. Holbach, W.-W. Chung, J. Comp. Neurol. 309, 129 (1991); R. O. L. Wong, K. Herrmann, C. J. Shatz, J. Neurobiol. 22, 685 (1991); S. R. Bodnarenko and L. M. Chalupa, Nature 364, 144 (1993); A. Kossel, S. Lowel, J. Bolz, J. Neurosci. 15, 3913 (1995).
    • (1995) J. Neurosci. , vol.15 , pp. 3913
    • Kossel, A.1    Lowel, S.2    Bolz, J.3
  • 39
    • 3543089419 scopus 로고    scopus 로고
    • note
    • We thank B. Burbach, K. Bronson, I. Miloslavskaya, and N. Dawkins for excellent technical assistance, Z. Li for making the pSC65-CPG15t3 construct, and R. Malinow, K. Svoboda, and J. Yin for critical reading of the manuscript. Supported by NIH (H.T.C. and E.N.), the National Down Syndrome Society (H.T.C.), and the Marie Robertson Fund (E.N.).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.