-
2
-
-
0038591762
-
-
J. R. Kirtley, S. I. Raider, R. M. Feenstra, and A. P. Fein, Appl. Phys. Lett. 50, 1607 (1987).
-
(1987)
Appl. Phys. Lett.
, vol.50
, pp. 1607
-
-
Kirtley, J.R.1
Raider, S.I.2
Feenstra, R.M.3
Fein, A.P.4
-
3
-
-
0000434707
-
-
H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 214
-
-
Hess, H.F.1
Robinson, R.B.2
Dynes, R.C.3
Valles, J.V.4
-
6
-
-
0000848966
-
-
Q. Chen, K.-W. Ng, A. E. Manzi, and H. L. Luo, Phys. Rev. B 49, 6193 (1994).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 6193
-
-
Chen, Q.1
Ng, K.-W.2
Manzi, A.E.3
Luo, H.L.4
-
7
-
-
0032484467
-
-
Y. DeWilde, N. Miyakawa, P. Guptasarma, M. Iavarone, L. Ozyuzer, J. F. Zasadzinski, P. Romano, D. G. Hinks, C. Kendziora, G. W. Crabtree, and K. E. Gray, Phys. Rev. Lett. 80, 153 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 153
-
-
Dewilde, Y.1
Miyakawa, N.2
Guptasarma, P.3
Iavarone, M.4
Ozyuzer, L.5
Zasadzinski, J.F.6
Romano, P.7
Hinks, D.G.8
Kendziora, C.9
Crabtree, G.W.10
Gray, K.E.11
-
9
-
-
0030909823
-
-
A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Science 275, 1767 (1997).
-
(1997)
Science
, vol.275
, pp. 1767
-
-
Yazdani, A.1
Jones, B.A.2
Lutz, C.P.3
Crommie, M.F.4
Eigler, D.M.5
-
13
-
-
21944443755
-
-
note
-
All differential conductance spectra measurements in this experiment were performed using a lock-in technique with a modulation amplitude of 50 μV. The junction resistance was set to 100 M at a bias voltage of 8 mV (well outside the superconducting energy gap).
-
-
-
-
16
-
-
0037990478
-
-
S. Guéron, H. Pothier, N. O. Birge, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 77, 3025 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3025
-
-
Guéron, S.1
Pothier, H.2
Birge, N.O.3
Esteve, D.4
Devoret, M.H.5
-
17
-
-
21944440980
-
-
private communication. One of the signatures of the proximity effect is the appearance of two dips directly outside of the peaks at each side of the gap edge. In SS tunneling this can be seen more clearly because there will be no thermal smearing due to a normal state electrode [as evidenced in Fig. 4(a)]. One can also approximately simulate SS tunneling effects by convoluting a SN tunneling curve with itself. Self-convolutions of both the data in Figs. 1(b) and 2(a) show such dips, whereas the self-convolution of the data in Fig. 4(b) does not. This indicates that the proximity effect is indeed only in the tip.
-
J. F. Zasadzinski (private communication). One of the signatures of the proximity effect is the appearance of two dips directly outside of the peaks at each side of the gap edge. In SS tunneling this can be seen more clearly because there will be no thermal smearing due to a normal state electrode [as evidenced in Fig. 4(a)]. One can also approximately simulate SS tunneling effects by convoluting a SN tunneling curve with itself. Self-convolutions of both the data in Figs. 1(b) and 2(a) show such dips, whereas the self-convolution of the data in Fig. 4(b) does not. This indicates that the proximity effect is indeed only in the tip.
-
-
-
Zasadzinski, J.F.1
-
18
-
-
0003801478
-
Principles of Electron Tunneling Spectroscopy
-
Oxford University Press, New York
-
E. L. Wolf, Principles of Electron Tunneling Spectroscopy, International series of monographs on physics, Vol. 71 (Oxford University Press, New York, 1985), p. 105.
-
(1985)
International Series of Monographs on Physics
, vol.71
, pp. 105
-
-
Wolf, E.L.1
-
20
-
-
0000446678
-
-
M. Franz, C. Kallin, P. I. Soininen, A. J. Berlinsky, and A. L. Fetter, Phys. Rev. B 53, 5795 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 5795
-
-
Franz, M.1
Kallin, C.2
Soininen, P.I.3
Berlinsky, A.J.4
Fetter, A.L.5
|