-
2
-
-
0026282832
-
-
GPS techniques are reviewed by T. Dixon [Rev. Geophys. 29, 249 (1991)]. For information on DORIS, see A. Cazenave, J. Valette, and C. Boucher [J. Geophys. Res. 97, 7109 (1992)]. SLR is summarized by D. Smith et al, [ibid. 95, 22013 (1990)]. For tectonic applications of space geodesy, see R. G. Gordon and S. Stein [Science 256, 333 (1992)] and S. Stein [in Space Geodesy and Geodynamics, D. Smith and D. Turcotte, Eds. (American Geophysical Union, Washington, DC, 1993), pp. 5-20].
-
(1991)
Rev. Geophys.
, vol.29
, pp. 249
-
-
Dixon, T.1
-
3
-
-
0026480778
-
-
GPS techniques are reviewed by T. Dixon [Rev. Geophys. 29, 249 (1991)]. For information on DORIS, see A. Cazenave, J. Valette, and C. Boucher [J. Geophys. Res. 97, 7109 (1992)]. SLR is summarized by D. Smith et al, [ibid. 95, 22013 (1990)]. For tectonic applications of space geodesy, see R. G. Gordon and S. Stein [Science 256, 333 (1992)] and S. Stein [in Space Geodesy and Geodynamics, D. Smith and D. Turcotte, Eds. (American Geophysical Union, Washington, DC, 1993), pp. 5-20].
-
(1992)
J. Geophys. Res.
, vol.97
, pp. 7109
-
-
Cazenave, A.1
Valette, J.2
Boucher, C.3
-
4
-
-
11844282320
-
-
GPS techniques are reviewed by T. Dixon [Rev. Geophys. 29, 249 (1991)]. For information on DORIS, see A. Cazenave, J. Valette, and C. Boucher [J. Geophys. Res. 97, 7109 (1992)]. SLR is summarized by D. Smith et al, [ibid. 95, 22013 (1990)]. For tectonic applications of space geodesy, see R. G. Gordon and S. Stein [Science 256, 333 (1992)] and S. Stein [in Space Geodesy and Geodynamics, D. Smith and D. Turcotte, Eds. (American Geophysical Union, Washington, DC, 1993), pp. 5-20].
-
(1990)
J. Geophys. Res.
, vol.95
, pp. 22013
-
-
Smith, D.1
-
5
-
-
0026450730
-
-
GPS techniques are reviewed by T. Dixon [Rev. Geophys. 29, 249 (1991)]. For information on DORIS, see A. Cazenave, J. Valette, and C. Boucher [J. Geophys. Res. 97, 7109 (1992)]. SLR is summarized by D. Smith et al, [ibid. 95, 22013 (1990)]. For tectonic applications of space geodesy, see R. G. Gordon and S. Stein [Science 256, 333 (1992)] and S. Stein [in Space Geodesy and Geodynamics, D. Smith and D. Turcotte, Eds. (American Geophysical Union, Washington, DC, 1993), pp. 5-20].
-
(1992)
Science
, vol.256
, pp. 333
-
-
Gordon, R.G.1
Stein, S.2
-
6
-
-
0002045426
-
-
D. Smith and D. Turcotte, Eds. American Geophysical Union, Washington, DC
-
GPS techniques are reviewed by T. Dixon [Rev. Geophys. 29, 249 (1991)]. For information on DORIS, see A. Cazenave, J. Valette, and C. Boucher [J. Geophys. Res. 97, 7109 (1992)]. SLR is summarized by D. Smith et al, [ibid. 95, 22013 (1990)]. For tectonic applications of space geodesy, see R. G. Gordon and S. Stein [Science 256, 333 (1992)] and S. Stein [in Space Geodesy and Geodynamics, D. Smith and D. Turcotte, Eds. (American Geophysical Union, Washington, DC, 1993), pp. 5-20].
-
(1993)
Space Geodesy and Geodynamics
, pp. 5-20
-
-
Stein, S.1
-
8
-
-
0000000603
-
-
M. Talwani and W. Pitman III, Eds. American Geophysical Union, Washington, DC
-
H. Kanamori, in Island Arcs, Trenches and Back-Arc Basins, M. Talwani and W. Pitman III, Eds. (American Geophysical Union, Washington, DC, 1977), pp. 163-174; K. McNally and J. Minster, J. Geophys. Res. 86, 4949 (1981 ); E. Peterson and T. Seno, ibid. 89, 10233 (1984); J. Pacheco, L. Sykes, C. Scholz, ibid. 98, 14133 (1993).
-
(1977)
Island Arcs, Trenches and Back-Arc Basins
, pp. 163-174
-
-
Kanamori, H.1
-
9
-
-
0019353881
-
-
H. Kanamori, in Island Arcs, Trenches and Back-Arc Basins, M. Talwani and W. Pitman III, Eds. (American Geophysical Union, Washington, DC, 1977), pp. 163-174; K. McNally and J. Minster, J. Geophys. Res. 86, 4949 (1981 ); E. Peterson and T. Seno, ibid. 89, 10233 (1984); J. Pacheco, L. Sykes, C. Scholz, ibid. 98, 14133 (1993).
-
(1981)
J. Geophys. Res.
, vol.86
, pp. 4949
-
-
McNally, K.1
Minster, J.2
-
10
-
-
0021523122
-
-
H. Kanamori, in Island Arcs, Trenches and Back-Arc Basins, M. Talwani and W. Pitman III, Eds. (American Geophysical Union, Washington, DC, 1977), pp. 163-174; K. McNally and J. Minster, J. Geophys. Res. 86, 4949 (1981 ); E. Peterson and T. Seno, ibid. 89, 10233 (1984); J. Pacheco, L. Sykes, C. Scholz, ibid. 98, 14133 (1993).
-
(1984)
J. Geophys. Res.
, vol.89
, pp. 10233
-
-
Peterson, E.1
Seno, T.2
-
11
-
-
0027840497
-
-
H. Kanamori, in Island Arcs, Trenches and Back-Arc Basins, M. Talwani and W. Pitman III, Eds. (American Geophysical Union, Washington, DC, 1977), pp. 163-174; K. McNally and J. Minster, J. Geophys. Res. 86, 4949 (1981 ); E. Peterson and T. Seno, ibid. 89, 10233 (1984); J. Pacheco, L. Sykes, C. Scholz, ibid. 98, 14133 (1993).
-
(1993)
J. Geophys. Res.
, vol.98
, pp. 14133
-
-
Pacheco, J.1
Sykes, L.2
Scholz, C.3
-
12
-
-
0001677228
-
-
D. James, Geol. Soc. Am. Bull. 82, 3325 (1971); Y. Fukao, A. Yamamoto, M. Kono, J. Geophys. Res. 94, 3876 (1989); B. Isacks, ibid. 93, 3211 (1988).
-
(1971)
Geol. Soc. Am. Bull.
, vol.82
, pp. 3325
-
-
James, D.1
-
13
-
-
0001677228
-
-
D. James, Geol. Soc. Am. Bull. 82, 3325 (1971); Y. Fukao, A. Yamamoto, M. Kono, J. Geophys. Res. 94, 3876 (1989); B. Isacks, ibid. 93, 3211 (1988).
-
(1989)
J. Geophys. Res.
, vol.94
, pp. 3876
-
-
Fukao, Y.1
Yamamoto, A.2
Kono, M.3
-
14
-
-
0023790592
-
-
D. James, Geol. Soc. Am. Bull. 82, 3325 (1971); Y. Fukao, A. Yamamoto, M. Kono, J. Geophys. Res. 94, 3876 (1989); B. Isacks, ibid. 93, 3211 (1988).
-
(1988)
J. Geophys. Res.
, vol.93
, pp. 3211
-
-
Isacks, B.1
-
16
-
-
0003249251
-
-
J. Schaer and J. Rogers, Eds. Princeton Univ. Press, Princeton, NJ
-
F. Megard, in The Anatomy of Mountain Ranges, J. Schaer and J. Rogers, Eds. (Princeton Univ. Press, Princeton, NJ, 1987), pp. 179-204; B. Sheffels, Geology 18, 812 (1990); M. Schmitz, Tectonics 13, 484 (1994); M. Sebrier et al., ibid. 7, 895 (1988); D. Roeder, ibid., p. 23; T. Sempere et al., Geology 18, 946 (1990); R. Allmendinger et al., Annu. Rev. Earth Planet. Sci. 25, 139 (1997).
-
(1987)
The Anatomy of Mountain Ranges
, pp. 179-204
-
-
Megard, F.1
-
17
-
-
84879879984
-
-
F. Megard, in The Anatomy of Mountain Ranges, J. Schaer and J. Rogers, Eds. (Princeton Univ. Press, Princeton, NJ, 1987), pp. 179-204; B. Sheffels, Geology 18, 812 (1990); M. Schmitz, Tectonics 13, 484 (1994); M. Sebrier et al., ibid. 7, 895 (1988); D. Roeder, ibid., p. 23; T. Sempere et al., Geology 18, 946 (1990); R. Allmendinger et al., Annu. Rev. Earth Planet. Sci. 25, 139 (1997).
-
(1990)
Geology
, vol.18
, pp. 812
-
-
Sheffels, B.1
-
18
-
-
0028333399
-
-
F. Megard, in The Anatomy of Mountain Ranges, J. Schaer and J. Rogers, Eds. (Princeton Univ. Press, Princeton, NJ, 1987), pp. 179-204; B. Sheffels, Geology 18, 812 (1990); M. Schmitz, Tectonics 13, 484 (1994); M. Sebrier et al., ibid. 7, 895 (1988); D. Roeder, ibid., p. 23; T. Sempere et al., Geology 18, 946 (1990); R. Allmendinger et al., Annu. Rev. Earth Planet. Sci. 25, 139 (1997).
-
(1994)
Tectonics
, vol.13
, pp. 484
-
-
Schmitz, M.1
-
19
-
-
0024219259
-
-
F. Megard, in The Anatomy of Mountain Ranges, J. Schaer and J. Rogers, Eds. (Princeton Univ. Press, Princeton, NJ, 1987), pp. 179-204; B. Sheffels, Geology 18, 812 (1990); M. Schmitz, Tectonics 13, 484 (1994); M. Sebrier et al., ibid. 7, 895 (1988); D. Roeder, ibid., p. 23; T. Sempere et al., Geology 18, 946 (1990); R. Allmendinger et al., Annu. Rev. Earth Planet. Sci. 25, 139 (1997).
-
(1988)
Tectonics
, vol.7
, pp. 895
-
-
Sebrier, M.1
-
20
-
-
15644362962
-
-
F. Megard, in The Anatomy of Mountain Ranges, J. Schaer and J. Rogers, Eds. (Princeton Univ. Press, Princeton, NJ, 1987), pp. 179-204; B. Sheffels, Geology 18, 812 (1990); M. Schmitz, Tectonics 13, 484 (1994); M. Sebrier et al., ibid. 7, 895 (1988); D. Roeder, ibid., p. 23; T. Sempere et al., Geology 18, 946 (1990); R. Allmendinger et al., Annu. Rev. Earth Planet. Sci. 25, 139 (1997).
-
Tectonics
, pp. 23
-
-
Roeder, D.1
-
21
-
-
84879879776
-
-
F. Megard, in The Anatomy of Mountain Ranges, J. Schaer and J. Rogers, Eds. (Princeton Univ. Press, Princeton, NJ, 1987), pp. 179-204; B. Sheffels, Geology 18, 812 (1990); M. Schmitz, Tectonics 13, 484 (1994); M. Sebrier et al., ibid. 7, 895 (1988); D. Roeder, ibid., p. 23; T. Sempere et al., Geology 18, 946 (1990); R. Allmendinger et al., Annu. Rev. Earth Planet. Sci. 25, 139 (1997).
-
(1990)
Geology
, vol.18
, pp. 946
-
-
Sempere, T.1
-
22
-
-
0030840227
-
-
F. Megard, in The Anatomy of Mountain Ranges, J. Schaer and J. Rogers, Eds. (Princeton Univ. Press, Princeton, NJ, 1987), pp. 179-204; B. Sheffels, Geology 18, 812 (1990); M. Schmitz, Tectonics 13, 484 (1994); M. Sebrier et al., ibid. 7, 895 (1988); D. Roeder, ibid., p. 23; T. Sempere et al., Geology 18, 946 (1990); R. Allmendinger et al., Annu. Rev. Earth Planet. Sci. 25, 139 (1997).
-
(1997)
Annu. Rev. Earth Planet. Sci.
, vol.25
, pp. 139
-
-
Allmendinger, R.1
-
24
-
-
0026445949
-
-
M. Beck, Phys. Earth Planet. Inter. 68, 1 (1991); R. McCaffrey, J. Geophys. Res. 97, 8905 (1992).
-
(1992)
J. Geophys. Res.
, vol.97
, pp. 8905
-
-
McCaffrey, R.1
-
25
-
-
0030713284
-
-
GPS data were analyzed following T. Dixon et al. [J. Geophys. Res. 102, 12017 (1997)]. We used high-precision nonfiducial satellite orbits and the Jet Propulsion Laboratory GIPSY analysis software to estimate site velocities in the International Terrestrial Reference Frame (ITRF-94) reference frame (10). Site velocities were estimated from least squares fits to daily positions weighted by the scaled formal error. Data from one site (CASM, Fig. 2) were anomalous, perhaps because of errors in setting up the GPS antenna over the geodetic monument. Sites, data, and uncertainties are given at www.sciencemag.org/feature/data/975403.shl
-
(1997)
J. Geophys. Res.
, vol.102
, pp. 12017
-
-
Dixon, T.1
-
26
-
-
0030713284
-
-
GPS data were analyzed following T. Dixon et al. [J. Geophys. Res. 102, 12017 (1997)]. We used high-precision nonfiducial satellite orbits and the Jet Propulsion Laboratory GIPSY analysis software to estimate site velocities in the International Terrestrial Reference Frame (ITRF-94) reference frame (10). Site velocities were estimated from least squares fits to daily positions weighted by the scaled formal error. Data from one site (CASM, Fig. 2) were anomalous, perhaps because of errors in setting up the GPS antenna over the geodetic monument. Sites, data, and uncertainties are given at www.sciencemag.org/feature/data/975403.shl
-
-
-
-
27
-
-
84984469901
-
-
Plate motions are specified by Euler (angular velocity) vectors giving either the relative motion between a plate pair or the absolute motion of an individual plate. These vectors can now be derived from space geodetic data and were previously derived from data recording plate motions averaged over the past few million years [C. Chase, Geophys. J. 29, 117 (1972); J. Minster et al., ibid. 36, 541 (1974)]. ITRF-94, a reference frame for space geodetic data [C. Boucher, IERS Technical Note 20 (Observatoire de Paris, Paris, 1996)], is designed to agree on average with the absolute plate motion model NNR NUVEL-1A, termed NNR-A. The latter is a revision of model NNR, derived by combining the assumption of no net torque on the lithosphere [D. Argus and R. Gordon, Geophys. Res. Lett. 18, 2039 (1991)] with global relative plate motion model NUVEL-1 [C. DeMets et al., Geophys. J. Int. 101, 425 (1990)], reflecting a change in the magnetic anomaly time scale subsequent to the publication of NUVEL-1. NUVEL-1A and NNR-A predict plate motion directions identical to those for NUVEL-1 and NNR NUVEL-1, but 4% slower [C. DeMets et al., Geophys. Res. Lett. 21, 2191 (1994)]. Because rate data in the models come from ridges, the predicted rates across subduction zones are derived indirectly by the closure of plate circuits. Space geodetic velocities in ITRF-94 can be compared with plate motions predicted by NNR-A, and relative motions are typically compared with NUVEL-1A (30).
-
(1972)
Geophys. J.
, vol.29
, pp. 117
-
-
Chase, C.1
-
28
-
-
84984435142
-
-
Plate motions are specified by Euler (angular velocity) vectors giving either the relative motion between a plate pair or the absolute motion of an individual plate. These vectors can now be derived from space geodetic data and were previously derived from data recording plate motions averaged over the past few million years [C. Chase, Geophys. J. 29, 117 (1972); J. Minster et al., ibid. 36, 541 (1974)]. ITRF-94, a reference frame for space geodetic data [C. Boucher, IERS Technical Note 20 (Observatoire de Paris, Paris, 1996)], is designed to agree on average with the absolute plate motion model NNR NUVEL-1A, termed NNR-A. The latter is a revision of model NNR, derived by combining the assumption of no net torque on the lithosphere [D. Argus and R. Gordon, Geophys. Res. Lett. 18, 2039 (1991)] with global relative plate motion model NUVEL-1 [C. DeMets et al., Geophys. J. Int. 101, 425 (1990)], reflecting a change in the magnetic anomaly time scale subsequent to the publication of NUVEL-1. NUVEL-1A and NNR-A predict plate motion directions identical to those for NUVEL-1 and NNR NUVEL-1, but 4% slower [C. DeMets et al., Geophys. Res. Lett. 21, 2191 (1994)]. Because rate data in the models come from ridges, the predicted rates across subduction zones are derived indirectly by the closure of plate circuits. Space geodetic velocities in ITRF-94 can be compared with plate motions predicted by NNR-A, and relative motions are typically compared with NUVEL-1A (30).
-
(1974)
Geophys. J.
, vol.36
, pp. 541
-
-
Minster, J.1
-
29
-
-
0026292617
-
-
Plate motions are specified by Euler (angular velocity) vectors giving either the relative motion between a plate pair or the absolute motion of an individual plate. These vectors can now be derived from space geodetic data and were previously derived from data recording plate motions averaged over the past few million years [C. Chase, Geophys. J. 29, 117 (1972); J. Minster et al., ibid. 36, 541 (1974)]. ITRF-94, a reference frame for space geodetic data [C. Boucher, IERS Technical Note 20 (Observatoire de Paris, Paris, 1996)], is designed to agree on average with the absolute plate motion model NNR NUVEL-1A, termed NNR-A. The latter is a revision of model NNR, derived by combining the assumption of no net torque on the lithosphere [D. Argus and R. Gordon, Geophys. Res. Lett. 18, 2039 (1991)] with global relative plate motion model NUVEL-1 [C. DeMets et al., Geophys. J. Int. 101, 425 (1990)], reflecting a change in the magnetic anomaly time scale subsequent to the publication of NUVEL-1. NUVEL-1A and NNR-A predict plate motion directions identical to those for NUVEL-1 and NNR NUVEL-1, but 4% slower [C. DeMets et al., Geophys. Res. Lett. 21, 2191 (1994)]. Because rate data in the models come from ridges, the predicted rates across subduction zones are derived indirectly by the closure of plate circuits. Space geodetic velocities in ITRF-94 can be compared with plate motions predicted by NNR-A, and relative motions are typically compared with NUVEL-1A (30).
-
(1991)
Geophys. Res. Lett.
, vol.18
, pp. 2039
-
-
Argus, D.1
Gordon, R.2
-
30
-
-
0025207077
-
-
Plate motions are specified by Euler (angular velocity) vectors giving either the relative motion between a plate pair or the absolute motion of an individual plate. These vectors can now be derived from space geodetic data and were previously derived from data recording plate motions averaged over the past few million years [C. Chase, Geophys. J. 29, 117 (1972); J. Minster et al., ibid. 36, 541 (1974)]. ITRF-94, a reference frame for space geodetic data [C. Boucher, IERS Technical Note 20 (Observatoire de Paris, Paris, 1996)], is designed to agree on average with the absolute plate motion model NNR NUVEL-1A, termed NNR-A. The latter is a revision of model NNR, derived by combining the assumption of no net torque on the lithosphere [D. Argus and R. Gordon, Geophys. Res. Lett. 18, 2039 (1991)] with global relative plate motion model NUVEL-1 [C. DeMets et al., Geophys. J. Int. 101, 425 (1990)], reflecting a change in the magnetic anomaly time scale subsequent to the publication of NUVEL-1. NUVEL-1A and NNR-A predict plate motion directions identical to those for NUVEL-1 and NNR NUVEL-1, but 4% slower [C. DeMets et al., Geophys. Res. Lett. 21, 2191 (1994)]. Because rate data in the models come from ridges, the predicted rates across subduction zones are derived indirectly by the closure of plate circuits. Space geodetic velocities in ITRF-94 can be compared with plate motions predicted by NNR-A, and relative motions are typically compared with NUVEL-1A (30).
-
(1990)
Geophys. J. Int.
, vol.101
, pp. 425
-
-
DeMets, C.1
-
31
-
-
0028666276
-
-
Plate motions are specified by Euler (angular velocity) vectors giving either the relative motion between a plate pair or the absolute motion of an individual plate. These vectors can now be derived from space geodetic data and were previously derived from data recording plate motions averaged over the past few million years [C. Chase, Geophys. J. 29, 117 (1972); J. Minster et al., ibid. 36, 541 (1974)]. ITRF-94, a reference frame for space geodetic data [C. Boucher, IERS Technical Note 20 (Observatoire de Paris, Paris, 1996)], is designed to agree on average with the absolute plate motion model NNR NUVEL-1A, termed NNR-A. The latter is a revision of model NNR, derived by combining the assumption of no net torque on the lithosphere [D. Argus and R. Gordon, Geophys. Res. Lett. 18, 2039 (1991)] with global relative plate motion model NUVEL-1 [C. DeMets et al., Geophys. J. Int. 101, 425 (1990)], reflecting a change in the magnetic anomaly time scale subsequent to the publication of NUVEL-1. NUVEL-1A and NNR-A predict plate motion directions identical to those for NUVEL-1 and NNR NUVEL-1, but 4% slower [C. DeMets et al., Geophys. Res. Lett. 21, 2191 (1994)]. Because rate data in the models come from ridges, the predicted rates across subduction zones are derived indirectly by the closure of plate circuits. Space geodetic velocities in ITRF-94 can be compared with plate motions predicted by NNR-A, and relative motions are typically compared with NUVEL-1A (30).
-
(1994)
Geophys. Res. Lett.
, vol.21
, pp. 2191
-
-
DeMets, C.1
-
32
-
-
0002136953
-
-
D. Smith and D. Turcotte, Eds. American Geophysical Union, Washington, DC
-
J. Robbins, D. Smith, and C. Ma [in Space Geodesy and Geodynamics, D. Smith and D. Turcotte, Eds. (American Geophysical Union, Washington, DC, 1993), pp. 21-36] noted the discrepancy at Easter Island between the motion estimated from SLR and that predicted by NUVEL-1A. However, data at one site provide only the two horizontal velocity compo-nents and are hence insufficient to define the three components of the Nazca plate's angular velocity vector, which requires horizontal velocity measurements at two sites (30).
-
(1993)
Space Geodesy and Geodynamics
, pp. 21-36
-
-
Robbins, J.1
Smith, D.2
Ma, C.3
-
33
-
-
0029508701
-
-
Space geodetic data for plate motions over a few years generally agree surprisingly well with the predictions of global plate motion models derived by estimating plate motions over millions of years (2, 11, 30). However, changes in plate motions over the past 3 My have been suggested for other plate pairs both from GPS data (30) and magnetic anomalies [C. DeMets, Geophys. Res. Lett. 22, 3545 (1995)]. Because our Nazca-South America Euler vector was derived from a short time series at only two sites, it is unclear whether importance should be ascribed to the discrepancy between it and the vector from NUVEL-1 A. The discrepancy may reflect the limited data, NUVEL-1's derivation without direct data across the subduction zone, or a change in plate motions. Assessment of such possible changes should improve as additional space geodetic sites and longer time series become available.
-
(1995)
Geophys. Res. Lett.
, vol.22
, pp. 3545
-
-
DeMets, C.1
-
34
-
-
15644366480
-
-
note
-
ω, 0.03°/My.
-
-
-
-
38
-
-
0025958876
-
-
S. Nishenko, Pure Appl. Geophys. 135, 169 (1991). For the recurrence intervals estimated in this paper, application of earthquake scaling relations [R. Geller, Bull. Seismol. Soc. Am. 66, 1501 (1976)] implies seismic slip rates of about 10 to 20 mm/year between 16° and 14°S.
-
(1991)
Pure Appl. Geophys.
, vol.135
, pp. 169
-
-
Nishenko, S.1
-
39
-
-
0025958876
-
-
S. Nishenko, Pure Appl. Geophys. 135, 169 (1991). For the recurrence intervals estimated in this paper, application of earthquake scaling relations [R. Geller, Bull. Seismol. Soc. Am. 66, 1501 (1976)] implies seismic slip rates of about 10 to 20 mm/year between 16° and 14°S.
-
(1976)
Bull. Seismol. Soc. Am.
, vol.66
, pp. 1501
-
-
Geller, R.1
-
43
-
-
49549154121
-
-
H. Kanamori and J. Cipar, Phys. Earth Planet. Inter. 9, 128 (1974); I. Cifuentes and P. Silver, J. Geophys. Res. 94, 643 (1989); S. Barrientos, Geophys. Res. Lett. 22, 3541 (1995); K. Heki, S. Miyazaki, H. Tsuji, Nature 386, 595 (1997).
-
(1974)
Phys. Earth Planet. Inter.
, vol.9
, pp. 128
-
-
Kanamori, H.1
Cipar, J.2
-
44
-
-
0024569237
-
-
H. Kanamori and J. Cipar, Phys. Earth Planet. Inter. 9, 128 (1974); I. Cifuentes and P. Silver, J. Geophys. Res. 94, 643 (1989); S. Barrientos, Geophys. Res. Lett. 22, 3541 (1995); K. Heki, S. Miyazaki, H. Tsuji, Nature 386, 595 (1997).
-
(1989)
J. Geophys. Res.
, vol.94
, pp. 643
-
-
Cifuentes, I.1
Silver, P.2
-
45
-
-
0029541173
-
-
H. Kanamori and J. Cipar, Phys. Earth Planet. Inter. 9, 128 (1974); I. Cifuentes and P. Silver, J. Geophys. Res. 94, 643 (1989); S. Barrientos, Geophys. Res. Lett. 22, 3541 (1995); K. Heki, S. Miyazaki, H. Tsuji, Nature 386, 595 (1997).
-
(1995)
Geophys. Res. Lett.
, vol.22
, pp. 3541
-
-
Barrientos, S.1
-
46
-
-
0030620915
-
-
H. Kanamori and J. Cipar, Phys. Earth Planet. Inter. 9, 128 (1974); I. Cifuentes and P. Silver, J. Geophys. Res. 94, 643 (1989); S. Barrientos, Geophys. Res. Lett. 22, 3541 (1995); K. Heki, S. Miyazaki, H. Tsuji, Nature 386, 595 (1997).
-
(1997)
Nature
, vol.386
, pp. 595
-
-
Heki, K.1
Miyazaki, S.2
Tsuji, H.3
-
47
-
-
0007464332
-
-
The question may be analogous to deciding whether bear attacks being more common in Wyoming than in New York indicates a "gap" where attacks are overdue or a difference in intrinsic hazard [S. Stein, Nature 356, 387 (1992)].
-
(1992)
Nature
, vol.356
, pp. 387
-
-
Stein, S.1
-
49
-
-
2642647133
-
-
P. Rydelek and S. Sacks, Geophys. J. Int. 100, 39 (1990); F. Pollitz, J. Geophys. Res. 102, 17921 (1997).
-
(1997)
J. Geophys. Res.
, vol.102
, pp. 17921
-
-
Pollitz, F.1
-
51
-
-
19244375818
-
-
K. Feigl et al., J. Geophys. Res. 98, 21677 (1993); T. Dixon et al., Tectonics 14, 755 (1995).
-
(1993)
J. Geophys. Res.
, vol.98
, pp. 21677
-
-
Feigl, K.1
-
52
-
-
84977721534
-
-
K. Feigl et al., J. Geophys. Res. 98, 21677 (1993); T. Dixon et al., Tectonics 14, 755 (1995).
-
(1995)
Tectonics
, vol.14
, pp. 755
-
-
Dixon, T.1
-
53
-
-
0029472405
-
-
J. Jackson, J. Haines, W. Holt, J. Geophys. Res. 100, 15205 (1995); K. Abdrakhmatov et al., Nature 384, 450 (1996).
-
(1995)
J. Geophys. Res.
, vol.100
, pp. 15205
-
-
Jackson, J.1
Haines, J.2
Holt, W.3
-
54
-
-
0029661103
-
-
J. Jackson, J. Haines, W. Holt, J. Geophys. Res. 100, 15205 (1995); K. Abdrakhmatov et al., Nature 384, 450 (1996).
-
(1996)
Nature
, vol.384
, pp. 450
-
-
Abdrakhmatov, K.1
-
56
-
-
0028315656
-
-
M. Beck et al., Tectonics 13, 215 (1994).
-
(1994)
Tectonics
, vol.13
, pp. 215
-
-
Beck, M.1
-
57
-
-
0027799770
-
-
J. Freymueller, J. Kellogg, V. Vega, J. Geophys. Res. 98, 21853 (1993); M. Bevis et al., Nature 374, 249 (1995); J. Freymueller et al., Geophys. Res. Lett. 23, 3107 (1996); R. Bilham et al., Nature 386, 61 (1997); R. King et al., Geology 25, 179 (1997). Global positioning system programs are also acquiring data in Chile and Argentina, south of our survey area.
-
(1993)
J. Geophys. Res.
, vol.98
, pp. 21853
-
-
Freymueller, J.1
Kellogg, J.2
Vega, V.3
-
58
-
-
0028870826
-
-
J. Freymueller, J. Kellogg, V. Vega, J. Geophys. Res. 98, 21853 (1993); M. Bevis et al., Nature 374, 249 (1995); J. Freymueller et al., Geophys. Res. Lett. 23, 3107 (1996); R. Bilham et al., Nature 386, 61 (1997); R. King et al., Geology 25, 179 (1997). Global positioning system programs are also acquiring data in Chile and Argentina, south of our survey area.
-
(1995)
Nature
, vol.374
, pp. 249
-
-
Bevis, M.1
-
59
-
-
0030292248
-
-
J. Freymueller, J. Kellogg, V. Vega, J. Geophys. Res. 98, 21853 (1993); M. Bevis et al., Nature 374, 249 (1995); J. Freymueller et al., Geophys. Res. Lett. 23, 3107 (1996); R. Bilham et al., Nature 386, 61 (1997); R. King et al., Geology 25, 179 (1997). Global positioning system programs are also acquiring data in Chile and Argentina, south of our survey area.
-
(1996)
Geophys. Res. Lett.
, vol.23
, pp. 3107
-
-
Freymueller, J.1
-
60
-
-
0030620637
-
-
J. Freymueller, J. Kellogg, V. Vega, J. Geophys. Res. 98, 21853 (1993); M. Bevis et al., Nature 374, 249 (1995); J. Freymueller et al., Geophys. Res. Lett. 23, 3107 (1996); R. Bilham et al., Nature 386, 61 (1997); R. King et al., Geology 25, 179 (1997). Global positioning system programs are also acquiring data in Chile and Argentina, south of our survey area.
-
(1997)
Nature
, vol.386
, pp. 61
-
-
Bilham, R.1
-
61
-
-
0030797181
-
-
J. Freymueller, J. Kellogg, V. Vega, J. Geophys. Res. 98, 21853 (1993); M. Bevis et al., Nature 374, 249 (1995); J. Freymueller et al., Geophys. Res. Lett. 23, 3107 (1996); R. Bilham et al., Nature 386, 61 (1997); R. King et al., Geology 25, 179 (1997). Global positioning system programs are also acquiring data in Chile and Argentina, south of our survey area.
-
(1997)
Geology
, vol.25
, pp. 179
-
-
King, R.1
-
62
-
-
0029501042
-
-
D. Argus and M. Heflin, Geophys. Res. Lett. 22, 1973 (1995); T. Dixon and A. Mao, ibid. 24, 535 (1997); K. Larson, J. Freymueller, S. Philipsen, J. Geophys. Res. 102, 9961 (1997).
-
(1995)
Geophys. Res. Lett.
, vol.22
, pp. 1973
-
-
Argus, D.1
Heflin, M.2
-
63
-
-
0031103413
-
-
D. Argus and M. Heflin, Geophys. Res. Lett. 22, 1973 (1995); T. Dixon and A. Mao, ibid. 24, 535 (1997); K. Larson, J. Freymueller, S. Philipsen, J. Geophys. Res. 102, 9961 (1997).
-
(1997)
Geophys. Res. Lett.
, vol.24
, pp. 535
-
-
Dixon, T.1
Mao, A.2
-
64
-
-
0345215191
-
-
D. Argus and M. Heflin, Geophys. Res. Lett. 22, 1973 (1995); T. Dixon and A. Mao, ibid. 24, 535 (1997); K. Larson, J. Freymueller, S. Philipsen, J. Geophys. Res. 102, 9961 (1997).
-
(1997)
J. Geophys. Res.
, vol.102
, pp. 9961
-
-
Larson, K.1
Freymueller, J.2
Philipsen, S.3
-
65
-
-
15644381894
-
-
note
-
Supported by NASA's Geodynamics program and NSF's Small Grants for Exploratory Research program. We thank the Instituto Geografico Militar, Bolivia, the Institute Geofisico del Peru, and University Navstar Consortium (especially J. Richardson, B. Baker, and K. Feaux) for invaluable assistance in GPS campaigns; J. Lee and V. Berhow for assistance with site selection; S. Wdowinski, R. Russo, C. DeMets, and R. McCaffrey for helpful discussions; and the international geodetic community for maintaining a permanent GPS network with publicly available data.
-
-
-
|