메뉴 건너뛰기




Volumn 92, Issue 1, 1998, Pages 63-112

Borel equivalence relations induced by actions of the symmetric group

Author keywords

Borel equivalence relations; Countable models; Infinite symmetric group

Indexed keywords


EID: 0032507197     PISSN: 01680072     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-0072(97)00049-3     Document Type: Article
Times cited : (45)

References (16)
  • 2
    • 0003337334 scopus 로고    scopus 로고
    • The descriptive set theory of Polish group actions
    • Cambridge Univ. Press, Cambridge
    • [2] H. Becker, A.S. Kechris, The descriptive set theory of Polish group actions, London Math. Soc. Lecture Note Series, vol. 232, Cambridge Univ. Press, Cambridge, 1996.
    • (1996) London Math. Soc. Lecture Note Series , vol.232
    • Becker, H.1    Kechris, A.S.2
  • 3
    • 0000986217 scopus 로고
    • Higher set theory and mathematical practice
    • [3] H. Friedman, Higher set theory and mathematical practice, Ann. Math. Logic 2 (1971) 326-357.
    • (1971) Ann. Math. Logic , vol.2 , pp. 326-357
    • Friedman, H.1
  • 4
    • 0000116625 scopus 로고
    • A borel reducibility theory for classes of countable structures
    • [4] H. Friedman, L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbol. Logic 54 (1989) 899-914.
    • (1989) J. Symbol. Logic , vol.54 , pp. 899-914
    • Friedman, H.1    Stanley, L.2
  • 5
    • 84968515230 scopus 로고
    • A Glimm-Effros dichotomy for Borel equivalence relations
    • [5] L. Harrington, A.S. Kechris, A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (4) (1990) 902-928.
    • (1990) J. Amer. Math. Soc. , vol.3 , Issue.4 , pp. 902-928
    • Harrington, L.1    Kechris, A.S.2    Louveau, A.3
  • 6
    • 85033519321 scopus 로고    scopus 로고
    • An absoluteness principle for Borel sets
    • to appear
    • [6] G. Hjorth, An absoluteness principle for Borel sets, J. Symbol. Logic, to appear.
    • J. Symbol. Logic
    • Hjorth, G.1
  • 7
    • 0030589733 scopus 로고    scopus 로고
    • Borel equivalence relations and classifications of countable models
    • [7] G. Hjorth, A.S. Kechris, Borel equivalence relations and classifications of countable models, Ann. Pure Appl. Logic 82 (1996) 221-272.
    • (1996) Ann. Pure Appl. Logic , vol.82 , pp. 221-272
    • Hjorth, G.1    Kechris, A.S.2
  • 8
    • 0031232143 scopus 로고    scopus 로고
    • New dichotomy theorems for Borel equivalence relations
    • [8] G. Hjorth, A.S. Kechris, New dichotomy theorems for Borel equivalence relations, Bull. Symbol. Logic 3 (1997) 329-346.
    • (1997) Bull. Symbol. Logic , vol.3 , pp. 329-346
    • Hjorth, G.1    Kechris, A.S.2
  • 11
    • 85033514263 scopus 로고
    • Ensembles analytiques et boréliens dans les espaces produits, Astérisque
    • de France
    • [11] A. Louveau, Ensembles analytiques et boréliens dans les espaces produits, Astérisque, Soc. Math, de France 78 (1980).
    • (1980) Soc. Math , vol.78
    • Louveau, A.1
  • 12
    • 0001647178 scopus 로고
    • On the reducibility order between Borel equivalence relations
    • [12] A. Louveau, On the reducibility order between Borel equivalence relations, Stud. Logic Found. Math. 134 (1994) 151-155.
    • (1994) Stud. Logic Found. Math. , vol.134 , pp. 151-155
    • Louveau, A.1
  • 14
    • 84966259299 scopus 로고
    • Polish group actions and the Vaught conjecture
    • [14] R. Sami, Polish group actions and the Vaught conjecture, Trans. Amer. Math. Soc. 341 (1994) 335-353.
    • (1994) Trans. Amer. Math. Soc. , vol.341 , pp. 335-353
    • Sami, R.1
  • 15
    • 21844497047 scopus 로고
    • Equivalence relations induced by actions of Polish groups
    • [15] S. Solecki, Equivalence relations induced by actions of Polish groups, Trans. Amer. Math. Soc. 347 (1995) 4765-4777.
    • (1995) Trans. Amer. Math. Soc. , vol.347 , pp. 4765-4777
    • Solecki, S.1
  • 16
    • 0001150901 scopus 로고
    • Invariant sets in topology and logic
    • [16] R. Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974) 269-294.
    • (1974) Fund. Math. , vol.82 , pp. 269-294
    • Vaught, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.