메뉴 건너뛰기




Volumn 31, Issue 40, 1998, Pages 8233-8245

A geometric approach to constrained mechanical systems, symmetries and inverse problems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0032500487     PISSN: 03054470     EISSN: None     Source Type: Journal    
DOI: 10.1088/0305-4470/31/40/015     Document Type: Article
Times cited : (13)

References (13)
  • 1
    • 0000009335 scopus 로고
    • A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics
    • Crampin M, Prince G E and Thompson G 1984 A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics J. Phys. A: Math. Gen. 17 1437-47
    • (1984) J. Phys. A: Math. Gen. , vol.17 , pp. 1437-1447
    • Crampin, M.1    Prince, G.E.2    Thompson, G.3
  • 3
    • 0012103046 scopus 로고
    • On the inverse problem of the calculus of variations for a class of coupled dynamical systems
    • Ibort L A and Marín Solano J 1991 On the inverse problem of the calculus of variations for a class of coupled dynamical systems Inverse Problems 7 713-25
    • (1991) Inverse Problems , vol.7 , pp. 713-725
    • Ibort, L.A.1    Marín Solano, J.2
  • 4
    • 0003309890 scopus 로고
    • Classical dynamics of non-holonomic systems: A geometric approach
    • Massa E and Pagani E 1991 Classical dynamics of non-holonomic systems: a geometric approach Ann. Inst. Henri Poincaré Phys. Théor. 55 511-44
    • (1991) Ann. Inst. Henri Poincaré Phys. Théor. , vol.55 , pp. 511-544
    • Massa, E.1    Pagani, E.2
  • 5
    • 0001810066 scopus 로고
    • Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics
    • Massa E and Pagani E 1994 Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics Ann. Inst. Henri Poincaré Phys. Théor. 61 17-62
    • (1994) Ann. Inst. Henri Poincaré Phys. Théor. , vol.61 , pp. 17-62
    • Massa, E.1    Pagani, E.2
  • 7
    • 21844510153 scopus 로고
    • The symmetiy in the structure of dynamical and adjoint symmetries of second-order differential equations
    • Morando P and Pasquero S 1995 The symmetiy in the structure of dynamical and adjoint symmetries of second-order differential equations J. Phys. A: Math. Gen. 28 1943-55
    • (1995) J. Phys. A: Math. Gen. , vol.28 , pp. 1943-1955
    • Morando, P.1    Pasquero, S.2
  • 8
    • 0039266761 scopus 로고    scopus 로고
    • Differential operators, symmetries and the inverse problem for second-order differential equations
    • Morando P and Pasquero S 1996 Differential operators, symmetries and the inverse problem for second-order differential equations Nonlinear Math. Phys. 3 68-84
    • (1996) Nonlinear Math. Phys. , vol.3 , pp. 68-84
    • Morando, P.1    Pasquero, S.2
  • 9
    • 0001484560 scopus 로고    scopus 로고
    • A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems
    • Sarlet W 1996 A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems Extracta Mathematicae 11 202-12
    • (1996) Extracta Mathematicae , vol.11 , pp. 202-212
    • Sarlet, W.1
  • 10
    • 21844484638 scopus 로고
    • A geometrical framework for the study of non-holonomic Lagrangian systems
    • Sarlet W, Cantrijn F and Saunders D J 1995 A geometrical framework for the study of non-holonomic Lagrangian systems J. Phys. A: Math. Gen. 28 3253-68
    • (1995) J. Phys. A: Math. Gen. , vol.28 , pp. 3253-3268
    • Sarlet, W.1    Cantrijn, F.2    Saunders, D.J.3
  • 11
    • 0009144789 scopus 로고    scopus 로고
    • A geometrical framework for the study of non-holonomic Lagrangian systems: II
    • Sarlet W, Cantrijn F and Saunders D J 1996 A geometrical framework for the study of non-holonomic Lagrangian systems: II J. Phys. A: Math. Gen. 29 4265-74
    • (1996) J. Phys. A: Math. Gen. , vol.29 , pp. 4265-4274
    • Sarlet, W.1    Cantrijn, F.2    Saunders, D.J.3
  • 12
    • 0031557972 scopus 로고    scopus 로고
    • A differential geometric setting for mixed first- and second-order ordinary differential equations
    • Sarlet W, Cantrijn F and Saunders D J 1997 A differential geometric setting for mixed first- and second-order ordinary differential equations J. Phys. A: Math. Gen, 30 4031-52
    • (1997) J. Phys. A: Math. Gen , vol.30 , pp. 4031-4052
    • Sarlet, W.1    Cantrijn, F.2    Saunders, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.