-
2
-
-
0031047888
-
-
Wang, M. D.; Yin, H.; Landick, R.; Gelles, J.; Block, S. M. Biophys. J. 1997, 72, 1335.
-
(1997)
Biophys. J.
, vol.72
, pp. 1335
-
-
Wang, M.D.1
Yin, H.2
Landick, R.3
Gelles, J.4
Block, S.M.5
-
3
-
-
0028071373
-
-
Bustamante, C.; Marko, J. F.; Siggia, E. D.; Smith, S. Science 1994, 265, 1599.
-
(1994)
Science
, vol.265
, pp. 1599
-
-
Bustamante, C.1
Marko, J.F.2
Siggia, E.D.3
Smith, S.4
-
4
-
-
0026495432
-
-
Smith, S. B.; Finzi, L.; Bustamante, C. Science 1992, 258, 1122.
-
(1992)
Science
, vol.258
, pp. 1122
-
-
Smith, S.B.1
Finzi, L.2
Bustamante, C.3
-
7
-
-
0029638377
-
-
Perkins, T. T.; Smith, D. E.; Larson, R. G.; Chu, S. Science 1995, 268, 83.
-
(1995)
Science
, vol.268
, pp. 83
-
-
Perkins, T.T.1
Smith, D.E.2
Larson, R.G.3
Chu, S.4
-
8
-
-
0002480690
-
-
j in terms of powers of j. See also the discussion by Yamakawa: eqs 32.41 and 32.42 in ref 5a.
-
(1954)
J. Polymer Sci.
, vol.12
, pp. 1
-
-
Kirkwood, J.G.1
-
9
-
-
0000301498
-
-
Larson, R. G; Perkins, T. T.; Smith, D. E.; Chu, S. Phys. Rev. E. 1997, 55, 1794.
-
(1997)
Phys. Rev. E.
, vol.55
, pp. 1794
-
-
Larson, R.G.1
Perkins, T.T.2
Smith, D.E.3
Chu, S.4
-
13
-
-
7444247799
-
-
Kirkwood, J. G.; Riseman, J. J. Chem. Phys. 1948, 16, 565. See also a discussion in: Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, England 1989; p 68. We tried using the more exact matrix of Rotne and Prager ( Rotne, J.; Prager, S. J. Chem. Phys. 1969, 50, 4831) but found that it made almost no difference.
-
(1948)
J. Chem. Phys.
, vol.16
, pp. 565
-
-
Kirkwood, J.G.1
Riseman, J.2
-
14
-
-
7444247799
-
-
Clarendon Press: Oxford, England
-
Kirkwood, J. G.; Riseman, J. J. Chem. Phys. 1948, 16, 565. See also a discussion in: Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, England 1989; p 68. We tried using the more exact matrix of Rotne and Prager ( Rotne, J.; Prager, S. J. Chem. Phys. 1969, 50, 4831) but found that it made almost no difference.
-
(1989)
The Theory of Polymer Dynamics
, pp. 68
-
-
Doi, M.1
Edwards, S.F.2
-
15
-
-
84933517499
-
-
Kirkwood, J. G.; Riseman, J. J. Chem. Phys. 1948, 16, 565. See also a discussion in: Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, England 1989; p 68. We tried using the more exact matrix of Rotne and Prager ( Rotne, J.; Prager, S. J. Chem. Phys. 1969, 50, 4831) but found that it made almost no difference.
-
(1969)
J. Chem. Phys.
, vol.50
, pp. 4831
-
-
Rotne, J.1
Prager, S.2
-
16
-
-
0000321561
-
-
Zwanzig, R.; Kieffer, J.; Weiss, G. H. Proc. Natl. Acad. Sci. U.S.A. 1968, 60, 381.
-
(1968)
Proc. Natl. Acad. Sci. U.S.A.
, vol.60
, pp. 381
-
-
Zwanzig, R.1
Kieffer, J.2
Weiss, G.H.3
-
19
-
-
85034462279
-
-
note
-
Consider a long wormlike chain of contour length C stretched by a force oriented along the x-axis, so the mean x-component of the end-to-end distance is X. Let this be conceptually divided into k equal segments each with the same contour length c. It is important to note that the segments are viewed as unmodified parts of the chain; they have not been detached, nor have free joints been introduced between them. Since the segments all have the same properties, and are all subject to the same stretching force, the x-components of their mean end-to-end extensions x are all the same, and must sum to X. Hence X/C = x/c, which is to say that the force law is the same for all segments, independent of the value of k or of the initial contour length C. Note, however, that we have assumed that the force applied to the ends is the only force. But in our model the real forces are distributed over all segments, thus assuming that all have the same force law is an approximation.
-
-
-
-
20
-
-
0002821446
-
-
Perrin, F. J. Phys. Radium 1936, 7 (7), 1, eq 102. This formula comes from the exact solution of the equations for the flow around the ellipsoid. Strictly speaking, it gives the average mobility of the randomly oriented ellipsoid; when we use it for the average resistance, we are making a small approxima tion. The basic formulas for the ellipsoid were derived by Oberbeck, A. J. Reine Angew. Math. 1876, 81, 62.
-
(1936)
J. Phys. Radium
, vol.7
, Issue.7
, pp. 1
-
-
Perrin, F.1
-
21
-
-
84941381816
-
-
Perrin, F. J. Phys. Radium 1936, 7 (7), 1, eq 102. This formula comes from the exact solution of the equations for the flow around the ellipsoid. Strictly speaking, it gives the average mobility of the randomly oriented ellipsoid; when we use it for the average resistance, we are making a small approxima tion. The basic formulas for the ellipsoid were derived by Oberbeck, A. J. Reine Angew. Math. 1876, 81, 62.
-
(1876)
J. Reine Angew. Math.
, vol.81
, pp. 62
-
-
Oberbeck, A.1
-
24
-
-
85034468143
-
-
Reference 9, p 8767, eqs 25 and 27, with eq 5
-
Reference 9, p 8767, eqs 25 and 27, with eq 5.
-
-
-
-
25
-
-
0000066563
-
-
Smith, D. E.; Perkins, T. T.; Chu, S. Macromolecules 1996, 29, 1372.
-
(1996)
Macromolecules
, vol.29
, pp. 1372
-
-
Smith, D.E.1
Perkins, T.T.2
Chu, S.3
-
26
-
-
0030561232
-
-
Long, D.; Viovy, J. L.; Ajdari, A. Biopolymers 1996, 39, 755.
-
(1996)
Biopolymers
, vol.39
, pp. 755
-
-
Long, D.1
Viovy, J.L.2
Ajdari, A.3
-
27
-
-
0030064676
-
-
Cluzel, P.; Lebrun, A.; Heller, C.; Lavery, R.; Viovy, J.-L.; Chatenay, D.; Caron, F. Science 1996, 271, 792.
-
(1996)
Science
, vol.271
, pp. 792
-
-
Cluzel, P.1
Lebrun, A.2
Heller, C.3
Lavery, R.4
Viovy, J.-L.5
Chatenay, D.6
Caron, F.7
-
28
-
-
0030024985
-
-
Smith, S. B.; Cui, Y.; Bustamante, C. Science 1996, 271, 795.
-
(1996)
Science
, vol.271
, pp. 795
-
-
Smith, S.B.1
Cui, Y.2
Bustamante, C.3
|