-
1
-
-
0028099393
-
A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion
-
[1] D.S. Burnett, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion, J. Acoust. Soc. Am. 96 (1994) 2798-2816.
-
(1994)
J. Acoust. Soc. Am.
, vol.96
, pp. 2798-2816
-
-
Burnett, D.S.1
-
3
-
-
0000501224
-
The finite element method in plane stress analysis
-
Pittsburgh, PA, Sept
-
[3] The adjective 'finite' in 'finite element' means non-infinitesimal, not non-infinite. (See R.W. Clough, The finite element method in plane stress analysis, Proc. 2nd ASCE Conf. Electronic Computation, Pittsburgh, PA, (Sept, 1960) 345-378.)
-
(1960)
Proc. 2nd ASCE Conf. Electronic Computation
, pp. 345-378
-
-
Clough, R.W.1
-
5
-
-
0003891366
-
-
M.A. Sc. Thesis, Univ. of British Columbia, Although the adjective 'infinite finite' is semantically correct, as explained in [3], all subsequent authors have dropped 'finite' after the word 'infinite'
-
[5] R.L. Ungless, An infinite finite element, M.A. Sc. Thesis, Univ. of British Columbia, 1973. (Although the adjective 'infinite finite' is semantically correct, as explained in [3], all subsequent authors have dropped 'finite' after the word 'infinite'.)
-
(1973)
An Infinite Finite Element
-
-
Ungless, R.L.1
-
7
-
-
0022093403
-
Mapped infinite elements for exterior wave problems
-
[7] O.C. Zienkiewicz, K. Bando, P. Bettess, C. Emson and T.C. Chiam, Mapped infinite elements for exterior wave problems, Int. J. Numer. Methods Engrg. 21 (1985) 1229-1251.
-
(1985)
Int. J. Numer. Methods Engrg.
, vol.21
, pp. 1229-1251
-
-
Zienkiewicz, O.C.1
Bando, K.2
Bettess, P.3
Emson, C.4
Chiam, T.C.5
-
8
-
-
0001015803
-
A note on the utility of a wave envelope approach in finite element duct transmission studies
-
[8] R.J. Astley and W. Eversman, A note on the utility of a wave envelope approach in finite element duct transmission studies, J. Sound Vib. 76 (1981) 595-601.
-
(1981)
J. Sound Vib.
, vol.76
, pp. 595-601
-
-
Astley, R.J.1
Eversman, W.2
-
9
-
-
0028976738
-
On the use of variable order infinite wave envelope elements for acoustic radiation and scattering
-
[9] L. Cremers and K.R. Fyfe, On the use of variable order infinite wave envelope elements for acoustic radiation and scattering, J. Acoust. Soc. Am. 97(4) (1995) 2028-2040.
-
(1995)
J. Acoust. Soc. Am.
, vol.97
, Issue.4
, pp. 2028-2040
-
-
Cremers, L.1
Fyfe, K.R.2
-
10
-
-
0040830371
-
A radial expansion for the acoustic field exterior to a prolate or oblate spheroid
-
submitted
-
[10] R.L. Holford, A radial expansion for the acoustic field exterior to a prolate or oblate spheroid, J. Acoust. Soc. Am, submitted.
-
J. Acoust. Soc. Am
-
-
Holford, R.L.1
-
11
-
-
0032074453
-
Prolate and oblate spheroidal acoustic infinite elements
-
[11] D.S. Burnett and R.L. Holford, Prolate and oblate spheroidal acoustic infinite elements, Comput. Methods Appl. Mech. Engrg. 158 (1998) 117-142..
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.158
, pp. 117-142
-
-
Burnett, D.S.1
Holford, R.L.2
-
12
-
-
0039827588
-
Convergence of the infinite element methods for the Helmholtz equation
-
Univ. of Texas at Austin, May
-
[12] L.F. Demkowicz and K. Gerdes, Convergence of the infinite element methods for the Helmholtz equation, Texas Inst. for Comp. and App, Math., Report 95-07, Univ. of Texas at Austin, May 1995.
-
(1995)
Texas Inst. for Comp. and App, Math., Report 95-07
-
-
Demkowicz, L.F.1
Gerdes, K.2
-
13
-
-
0030286184
-
Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements
-
[13] K. Gerdes and L.F. Demkowicz, Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements, Comput. Methods Appl. Mech. Engrg. 137 (1996) 239-273.
-
(1996)
Comput. Methods Appl. Mech. Engrg.
, vol.137
, pp. 239-273
-
-
Gerdes, K.1
Demkowicz, L.F.2
-
15
-
-
0039644027
-
The conjugated vs. the unconjugated infinite element method for the Helmholtz equation in exterior domains
-
Zurich, Switz., Research Report 96-11, July
-
[15] K. Gerdes, The conjugated vs. the unconjugated infinite element method for the Helmholtz equation in exterior domains, Eidgenossische Technische Hochschule, Zurich, Switz., Research Report 96-11, July 1996.
-
(1996)
Eidgenossische Technische Hochschule
-
-
Gerdes, K.1
-
18
-
-
0039051791
-
Mapped spheroidal wave-envelope elements for unbounded wave problems
-
San Francisco, Aug.
-
[18] R.J. Astley and J.P. Coyette, Mapped spheroidal wave-envelope elements for unbounded wave problems, Proc. Fourth U.S. Nat. Congress Comp. Mech., San Francisco, Aug. 1997.
-
(1997)
Proc. Fourth U.S. Nat. Congress Comp. Mech.
-
-
Astley, R.J.1
Coyette, J.P.2
-
19
-
-
0040235775
-
On the use of infinite elements and the DtN condition for solving large-scale problems in acoustics
-
San Francisco, Aug.
-
[19] M. Malhotra, A.A. Oberai and P.M. Pinsky, On the use of infinite elements and the DtN condition for solving large-scale problems in acoustics, Proc. Fourth U.S. Nat. Congress Comp. Mech., San Francisco, Aug. 1997.
-
(1997)
Proc. Fourth U.S. Nat. Congress Comp. Mech.
-
-
Malhotra, M.1
Oberai, A.A.2
Pinsky, P.M.3
-
20
-
-
0040235725
-
Transient infinite elements for acoustics and shock
-
DE-Vol. 84-2, ASME
-
[20] J.L. Cipolla, Transient infinite elements for acoustics and shock, DE-Vol. 84-2, 1995 Design Eng. Tech. Conf., Vol. 3 - Part B, ASME, 113-128 (1995).
-
(1995)
1995 Design Eng. Tech. Conf.
, vol.3
, Issue.PART B
, pp. 113-128
-
-
Cipolla, J.L.1
-
21
-
-
0002572611
-
A transient infinite element for multi-dimensional acoustic radiation
-
DE-Vol. 84-2, ASME
-
[21] R.J. Astley, A transient infinite element for multi-dimensional acoustic radiation, DE-Vol. 84-2, 1995 Design Eng. Tech. Conf., Vol. 3 - Part B, ASME, 97-111 (1995).
-
(1995)
1995 Design Eng. Tech. Conf.
, vol.3
, Issue.PART B
, pp. 97-111
-
-
Astley, R.J.1
-
23
-
-
0004066046
-
-
Academic Press, New York, Sn.
-
[23] Although it is not germane to this discussion, we may mention that, among all ellipsoids that surround a convex structure, K, there exists exactly one that has minimum volume. This ellipsoid is called the minimum ellipsoid or Loewner ellipsoid of K. [See H. Buseman, The Geometry of Geodesies (Academic Press, New York, 1955), Sn. 16.]
-
(1955)
The Geometry of Geodesies
, pp. 16
-
-
Buseman, H.1
-
26
-
-
0004026166
-
-
Chapter 10. American Mathematical Society, Providence, RI
-
[26] M. Marden, Geometry of Polynomials, Chapter 10. (American Mathematical Society, Providence, RI, 1966).
-
(1966)
Geometry of Polynomials
-
-
Marden, M.1
-
28
-
-
0031554692
-
A simple impedance-infinite element for the finite element solution of the three-dimensional wave equation in unbounded domains
-
[28] L.F. Kallivokas, J. Bielak and R.C. MacCamy, A simple impedance-infinite element for the finite element solution of the three-dimensional wave equation in unbounded domains, Comput. Methods Appl. Mech. Engrg. 147 (1977) 235-262.
-
(1977)
Comput. Methods Appl. Mech. Engrg.
, vol.147
, pp. 235-262
-
-
Kallivokas, L.F.1
Bielak, J.2
MacCamy, R.C.3
|