메뉴 건너뛰기




Volumn 158, Issue 1-2, 1998, Pages 117-141

Prolate and oblate spheroidal acoustic infinite elements

Author keywords

[No Author keywords available]

Indexed keywords

ARCHITECTURAL ACOUSTICS; CONVERGENCE OF NUMERICAL METHODS; MATHEMATICAL MODELS;

EID: 0032074453     PISSN: 00457825     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0045-7825(97)00251-X     Document Type: Article
Times cited : (69)

References (14)
  • 1
    • 0028099393 scopus 로고
    • A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion
    • [1] D.S. Burnett, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion, J. Acoust. Soc. Am. 96 (1994) 2798-2816.
    • (1994) J. Acoust. Soc. Am. , vol.96 , pp. 2798-2816
    • Burnett, D.S.1
  • 2
    • 0039643953 scopus 로고    scopus 로고
    • A multipole expansion for the acoustic field exterior to a prolate or oblate spheroid
    • submitted
    • [2] R.L. Holford, A multipole expansion for the acoustic field exterior to a prolate or oblate spheroid, J. Acoust. Soc. Am., submitted.
    • J. Acoust. Soc. Am.
    • Holford, R.L.1
  • 3
    • 0000562535 scopus 로고
    • On Sommerfeld's 'Radiation Condition'
    • [3] F.V. Atkinson, On Sommerfeld's 'Radiation Condition', Phil. Mag. 40 (1949) 645-651.
    • (1949) Phil. Mag. , vol.40 , pp. 645-651
    • Atkinson, F.V.1
  • 4
    • 84968483597 scopus 로고
    • A generalization of theorems of Rellich and Atkinson
    • [4] C.H. Wilcox, A generalization of theorems of Rellich and Atkinson, Proc. Am. Math. Soc. 7 (1956) 271-276.
    • (1956) Proc. Am. Math. Soc. , vol.7 , pp. 271-276
    • Wilcox, C.H.1
  • 5
    • 84980080840 scopus 로고
    • An expansion theorem for electromagnetic fields
    • [5] C.H. Wilcox, An expansion theorem for electromagnetic fields, Comm. Pure Appl. Math. 9 (1956) 115-134.
    • (1956) Comm. Pure Appl. Math. , vol.9 , pp. 115-134
    • Wilcox, C.H.1
  • 7
    • 0039827590 scopus 로고    scopus 로고
    • note
    • [7] According to Ref. [4], the differentiability properties of this expansion were first proved by R.B. Barrar and A.F. Kay in unpublished work.
  • 13
    • 0001201384 scopus 로고
    • Finite element solution of the Helmholtz equation with high wave number. Part i: The h-version of the FEM
    • [13] F. Ihlenburg and I. Babuska, Finite element solution of the Helmholtz equation with high wave number. Part I: The h-version of the FEM, Comput. Math. Applic. 30(9) (1995) 9-37.
    • (1995) Comput. Math. Applic. , vol.30 , Issue.9 , pp. 9-37
    • Ihlenburg, F.1    Babuska, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.