메뉴 건너뛰기




Volumn 8, Issue 6, 1998, Pages 770-777

The adenylyl and guanylyl cyclase superfamily

Author keywords

[No Author keywords available]

Indexed keywords

ADENYLATE CYCLASE; DNA POLYMERASE; FORSKOLIN; GUANINE NUCLEOTIDE BINDING PROTEIN; GUANYLATE CYCLASE; PYROPHOSPHATE;

EID: 0032425454     PISSN: 0959440X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-440X(98)80097-3     Document Type: Article
Times cited : (73)

References (41)
  • 2
    • 0030761732 scopus 로고    scopus 로고
    • Calmodulin-regulated adenylyl cyclases and neuromodulation
    • 2. Xia ZG, Storm DR: Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr Opin Neurobiol 1997, 7:391-396.
    • (1997) Curr Opin Neurobiol , vol.7 , pp. 391-396
    • Xia, Z.G.1    Storm, D.R.2
  • 3
    • 0030974622 scopus 로고    scopus 로고
    • Tailoring cAMP-signalling responses through isoform multiplicity
    • 3. Houslay MD, Milligan G: Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci 1997, 22:217-224.
    • (1997) Trends Biochem Sci , vol.22 , pp. 217-224
    • Houslay, M.D.1    Milligan, G.2
  • 6
    • 0031820874 scopus 로고    scopus 로고
    • Catalytic mechanism and regulation of mammalian adenylyl cyclases
    • 6. Tang WJ, Hurley JH: Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol 1998, 54:231-240.
    • (1998) Mol Pharmacol , vol.54 , pp. 231-240
    • Tang, W.J.1    Hurley, J.H.2
  • 10
    • 0029901664 scopus 로고    scopus 로고
    • Interaction of the two cytosolic domains of mammalian adenylyl cyclase
    • 10. Whisnant RE, Gilman AG, Dessauer CW: Interaction of the two cytosolic domains of mammalian adenylyl cyclase. Proc Natl Acad Sci USA 1996, 93:6621-6625.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 6621-6625
    • Whisnant, R.E.1    Gilman, A.G.2    Dessauer, C.W.3
  • 12
    • 0028034529 scopus 로고
    • Guanylyl cyclase receptors
    • 12. Garbers DL, Lowe DG: Guanylyl cyclase receptors. J Biol Chem 1994, 269:30741-30744.
    • (1994) J Biol Chem , vol.269 , pp. 30741-30744
    • Garbers, D.L.1    Lowe, D.G.2
  • 13
    • 0030903730 scopus 로고    scopus 로고
    • Characterization and crystallization of a minimal catalytic core domain from mammalian type II adenylyl cyclase
    • 13. Zhang G, Liu Y, Qin J, Vo B, Tang WJ, Ruoho AE, Hurley JH: Characterization and crystallization of a minimal catalytic core domain from mammalian type II adenylyl cyclase. Protein Sci 1997, 6:903-908.
    • (1997) Protein Sci , vol.6 , pp. 903-908
    • Zhang, G.1    Liu, Y.2    Qin, J.3    Vo, B.4    Tang, W.J.5    Ruoho, A.E.6    Hurley, J.H.7
  • 14
    • 0030901637 scopus 로고    scopus 로고
    • Structure of the adenylyl cyclase catalytic core
    • 2 homodimer. The structure reveals the details of forskolin binding and suggests a mechanism for forskolin activation.
    • (1997) Nature , vol.386 , pp. 247-253
    • Zhang, G.1    Liu, Y.2    Ruoho, A.E.3    Hurley, J.H.4
  • 15
  • 18
    • 0030832040 scopus 로고    scopus 로고
    • Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase
    • 18. Dessauer CW, Scully TT, Gilman AG: Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem 1997, 272:22272-22277.
    • (1997) J Biol Chem , vol.272 , pp. 22272-22277
    • Dessauer, C.W.1    Scully, T.T.2    Gilman, A.G.3
  • 19
    • 0032568549 scopus 로고    scopus 로고
    • Two amino acid substitutions convert a guanylyl cyclase, retgc-1, into an adenylyl cyclase
    • 19. Tucker CL, Hurley JH, Miller TR, Hurley JB: Two amino acid substitutions convert a guanylyl cyclase, retGC-1, into an adenylyl cyclase. Proc Natl Acad Sci USA 1998, 95:5993-5997. A homodimeric membrane guanylyl cyclase was converted into an adenylyl cyclase by replacing the cysteine and glutamate that interact with the guanine ring of GTP with an aspartate and a lysine, as suggested by homology modeling [11•]. A third change (arginine to glutamine) leads to an unregulated ATP-specific enzyme, but regulation was rescued in a quintuple mutant incorporating two hydrophobic packing changes at the dimer interface. This suggests connections between the specificity pocket, dimer interface and regulatory mechanisms.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 5993-5997
    • Tucker, C.L.1    Hurley, J.H.2    Miller, T.R.3    Hurley, J.B.4
  • 20
    • 0032568930 scopus 로고    scopus 로고
    • Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases
    • 20. Sunahara RK, Beuve A, Tesmer JJG, Sprang SR, Garbers DL, Gilman AG: Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 1998, 273:16332-16338. A soluble adenylyl cyclase (AC) heterodimer was made partly GTP-specific and soluble guanylyl cyclase (GC) was completely converted into an AC using the same three mutations described in [19••], starting from the heterodimer structure [17••]. The key arginine/glutamine is provided by the AC C, domain or the GC α subunit in the heterodimers. The specificity swaps also work on adenine and guanine-containing P-site inhibitors, thereby extending the P-site inhibition concept to the GCs.
    • (1998) J Biol Chem , vol.273 , pp. 16332-16338
    • Sunahara, R.K.1    Beuve, A.2    Tesmer, J.J.G.3    Sprang, S.R.4    Garbers, D.L.5    Gilman, A.G.6
  • 21
    • 0030043839 scopus 로고    scopus 로고
    • 2′, 5′-dideoxyadenosine 3′-polyphosphates are potent inhibitors of adenylyl cyclases
    • 21. Desaubry L, Shoshani I, Johnson RA: 2′, 5′-dideoxyadenosine 3′-polyphosphates are potent inhibitors of adenylyl cyclases. J Biol Chem 1996, 271:14028-14034.
    • (1996) J Biol Chem , vol.271 , pp. 14028-14034
    • Desaubry, L.1    Shoshani, I.2    Johnson, R.A.3
  • 22
    • 0030736715 scopus 로고    scopus 로고
    • The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of p-site inhibition
    • 22. Dessauer CW, Gilman AG: The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition. J Biol Chem 1997, 272:27787-27795. This paper shows that P-site inhibitors compete kinetically with cAMP in the reverse reaction and helps underpin the interpretation of the P-site inhibitor complex structure [17••].
    • (1997) J Biol Chem , vol.272 , pp. 27787-27795
    • Dessauer, C.W.1    Gilman, A.G.2
  • 25
    • 0028869130 scopus 로고
    • Truncation and alanine-scanning mutants of type I adenylyl cyclase
    • 25. Tang WJ, Stanzel M, Gilman AG: Truncation and alanine-scanning mutants of type I adenylyl cyclase. Biochemistry 1995, 34:14563-14572.
    • (1995) Biochemistry , vol.34 , pp. 14563-14572
    • Tang, W.J.1    Stanzel, M.2    Gilman, A.G.3
  • 26
    • 0025283975 scopus 로고
    • Stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments
    • 26. Koch KW, Eckstein F, Stryer L: Stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments. J Biol Chem 1990, 265:9659-9663.
    • (1990) J Biol Chem , vol.265 , pp. 9659-9663
    • Koch, K.W.1    Eckstein, F.2    Stryer, L.3
  • 27
    • 0016775208 scopus 로고
    • Metal and metal-ATP interaction with brain and cardiac adenylate cyclase
    • 27. Garbers DL, Johnson RA: Metal and metal-ATP interaction with brain and cardiac adenylate cyclase. J Biol Chem 1975, 250:8449-8456.
    • (1975) J Biol Chem , vol.250 , pp. 8449-8456
    • Garbers, D.L.1    Johnson, R.A.2
  • 28
    • 0032518398 scopus 로고    scopus 로고
    • Crystal structure of bacteriophage T7 DNA polymerase complexed to a primer-template, a nucleoside triphosphate, and its processivity factor thioredoxin
    • 28. Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T: Crystal structure of bacteriophage T7 DNA polymerase complexed to a primer-template, a nucleoside triphosphate, and its processivity factor thioredoxin. Nature 1998, 391:251-258. This structure reveals in high-resolution detail how two metal ions bind to the polymerase I family palm domain. This provides the best available model of the coordination chemistry of the adenylyl cyclase (AC) catalytic complex. The same metal-nucleotide interactions were first seen in DNA polymerase β [29], although its β-sheet topology differs from both polymerase I and AC.
    • (1998) Nature , vol.391 , pp. 251-258
    • Doublie, S.1    Tabor, S.2    Long, A.M.3    Richardson, C.C.4    Ellenberger, T.5
  • 29
    • 0030930760 scopus 로고    scopus 로고
    • Crystal structure of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism
    • 29. Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H: Crystal structure of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 1997, 36:11205-11215.
    • (1997) Biochemistry , vol.36 , pp. 11205-11215
    • Sawaya, M.R.1    Prasad, R.2    Wilson, S.H.3    Kraut, J.4    Pelletier, H.5
  • 30
    • 0030986180 scopus 로고    scopus 로고
    • The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase
    • 2 domain of adenylyl cyclase were identified from genetic screens.
    • (1997) J Biol Chem , vol.272 , pp. 12342-12349
    • Van, S.Z.1    Huang, Z.H.2    Shaw, R.S.3    Tang, W.J.4
  • 31
    • 0031911555 scopus 로고    scopus 로고
    • Conversion of forskolin-insensitive to forskolin-sensitive (mouse-type IX) adenylyl cyclase
    • 31. Van SZ, Huang ZH, Andrews RK, Tang WJ: Conversion of forskolin-insensitive to forskolin-sensitive (mouse-type IX) adenylyl cyclase. Mol Pharmacol 1998, 53:182-187. An elegant application of protein engineering both to help identify two key determinants of forskolin sensitivity and to create a forskolin-sensitive AC9.
    • (1998) Mol Pharmacol , vol.53 , pp. 182-187
    • Van, S.Z.1    Huang, Z.H.2    Andrews, R.K.3    Tang, W.J.4
  • 32
    • 0024443061 scopus 로고
    • Forskolin: A specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action?
    • 32. Laurenza A, Sutkowski EM, Seamon KB: Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci 1989, 10:442-447.
    • (1989) Trends Pharmacol Sci , vol.10 , pp. 442-447
    • Laurenza, A.1    Sutkowski, E.M.2    Seamon, K.B.3
  • 33
    • 0032078245 scopus 로고    scopus 로고
    • Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: Implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide
    • 33. Stone JR, Marietta MA: Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem Biol 1998, 5:255-261.
    • (1998) Chem Biol , vol.5 , pp. 255-261
    • Stone, J.R.1    Marietta, M.A.2
  • 37
    • 0029770441 scopus 로고    scopus 로고
    • Constitutively active adenylyl cyclase mutant requires neither g proteins nor cytosolic regulators
    • 37. Parent CA, Devreotes PN: Constitutively active adenylyl cyclase mutant requires neither G proteins nor cytosolic regulators. J Biol Chem 1996, 271:18333-18336.
    • (1996) J Biol Chem , vol.271 , pp. 18333-18336
    • Parent, C.A.1    Devreotes, P.N.2
  • 40
    • 0027496709 scopus 로고
    • Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain
    • 40. Wu Z, Wong ST, Storm DR: Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. J Biol Chem 1993, 268:23766-23768.
    • (1993) J Biol Chem , vol.268 , pp. 23766-23768
    • Wu, Z.1    Wong, S.T.2    Storm, D.R.3
  • 41
    • 0031422647 scopus 로고    scopus 로고
    • Bifunctional structure of two adenylyl cyclases from the myxobacterium Stigmatella aurantiaca
    • 41. Coudart-Cavalli MP, Sismeiro O, Danchin A: Bifunctional structure of two adenylyl cyclases from the myxobacterium Stigmatella aurantiaca. Biochimie 1997, 79:757-767. The authors describe the cloning of a bacterial adenylyl cyclase (AC) that has six transmembrane segments and a single catalytic domain. It presumably functions as a homodimer of 12 transmembrane segments. It suggests a missing link in the probable evolution of the complex mammalian AC from a simpler soluble or single transmembrane homodimeric ancestor and perhaps opens a new avenue for genetic analysis of the function of the transmembrane regions.
    • (1997) Biochimie , vol.79 , pp. 757-767
    • Coudart-Cavalli, M.P.1    Sismeiro, O.2    Danchin, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.