-
1
-
-
0024861871
-
Approximation by superposition of a sigmoidal function
-
1. G. Cybenko, Approximation by superposition of a sigmoidal function, Mathematics of Control, Signals, and Systems 2, 303-314 (1989).
-
(1989)
Mathematics of Control, Signals, and Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
2
-
-
0024991997
-
Networks and the best approximation property
-
2. F. Girosi and T. Poggio, Networks and the best approximation property, Biological Cybernetics 63, 169-176 (1990).
-
(1990)
Biological Cybernetics
, vol.63
, pp. 169-176
-
-
Girosi, F.1
Poggio, T.2
-
3
-
-
0027812765
-
Some new results on neural network approximation
-
3. K. Hornik, Some new results on neural network approximation, Neural Networks 6, 1069-1072 (1993).
-
(1993)
Neural Networks
, vol.6
, pp. 1069-1072
-
-
Hornik, K.1
-
4
-
-
0025627940
-
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
-
4. K. Hornik, M. Stinchcombe and H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks 3, 551-560 (1990).
-
(1990)
Neural Networks
, vol.3
, pp. 551-560
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
5
-
-
0025799121
-
Representation of functions by superpositions of a step or sigmoidal function and their applications to neural network theory
-
5. Y. Ito, Representation of functions by superpositions of a step or sigmoidal function and their applications to neural network theory, Neural Networks 4, 385-394 (1991).
-
(1991)
Neural Networks
, vol.4
, pp. 385-394
-
-
Ito, Y.1
-
6
-
-
0000646059
-
Learning internal representations by error propagation
-
Edited by D. Rumelhart, J.L. McClelland and the PDP Research Group, Ch. 8, MIT Press, Cambridge, MA
-
6. D. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error propagation, In Parallel Distributed Processing: Exploration in the Microstructure of Cognition, (Edited by D. Rumelhart, J.L. McClelland and the PDP Research Group), Ch. 8, pp. 318-362, MIT Press, Cambridge, MA, (1986).
-
(1986)
Parallel Distributed Processing: Exploration in the Microstructure of Cognition
, pp. 318-362
-
-
Rumelhart, D.1
Hinton, G.E.2
Williams, R.J.3
-
7
-
-
0000443781
-
Ill-conditioning in neural network training problems
-
7. S. Saarinen, R. Bramley and G. Cybenko, Ill-conditioning in neural network training problems, SIAM J. Sci. Comput. 14 (3), 693-714 (1993).
-
(1993)
SIAM J. Sci. Comput.
, vol.14
, Issue.3
, pp. 693-714
-
-
Saarinen, S.1
Bramley, R.2
Cybenko, G.3
-
8
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
8. T. Poggio and F. Girosi, Regularization algorithms for learning that are equivalent to multilayer networks, Science 247, 978-982 (1990).
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
9
-
-
0025490985
-
Networks for approximation and learning
-
9. T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the IEEE 78 (9), 1481-1497 (1990).
-
(1990)
Proceedings of the IEEE 78
, vol.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
11
-
-
0027659357
-
Curvature-driven smoothing: A learning algorithm for feedforward networks
-
11. C.M. Bishop, Curvature-driven smoothing: A learning algorithm for feedforward networks, IEEE Transactions on Neural Networks 4 (5), 882-884 (1993).
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.5
, pp. 882-884
-
-
Bishop, C.M.1
-
12
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
12. C.M. Bishop, Training with noise is equivalent to Tikhonov regularization, Neural Computation 7, 108-116 (1995).
-
(1995)
Neural Computation
, vol.7
, pp. 108-116
-
-
Bishop, C.M.1
-
13
-
-
0028425697
-
Functional approximation by feed-forward networks: A least square approach to generalization
-
13. A.R. Webb, Functional approximation by feed-forward networks: A least square approach to generalization, IEEE Transactions on Neural Networks 5 (3), 363-371 (1994).
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.3
, pp. 363-371
-
-
Webb, A.R.1
-
14
-
-
0029306953
-
Similarity of error regularization, sigmoid gain scaling, target smoothing, and training with jitter
-
14. R. Reed, R.J. Marks and S. Oh, Similarity of error regularization, sigmoid gain scaling, target smoothing, and training with jitter, IEEE Transactions on Neural Networks 6 (3), 529-538 (1995).
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.3
, pp. 529-538
-
-
Reed, R.1
Marks, R.J.2
Oh, S.3
-
15
-
-
0029403793
-
Stochastic choice of basis functions in adaptive function approximation and the functional-link net
-
15. B. Igelnik and Y.-H. Pao, Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Transactions on Neural Networks 6 (6), 1320-1329 (1995).
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.6
, pp. 1320-1329
-
-
Igelnik, B.1
Pao, Y.-H.2
-
16
-
-
0026116468
-
Orthogonal least square algorithm for radial basis function networks
-
16. S. Chen, C.F.N. Cowan and P.M. Grant, Orthogonal least square algorithm for radial basis function networks, IEEE Transactions on Neural Networks 2 (2), 302-309 (1991).
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
17
-
-
0000992610
-
Initializing weights of a multilayer perception network by using the orthogonal least squares algorithm
-
17. M. Lehtokangas, J. Saarinen, K. Kaski and P. Huuntanen, Initializing weights of a multilayer perception network by using the orthogonal least squares algorithm, Neural Computation 7, 982-999 (1995).
-
(1995)
Neural Computation
, vol.7
, pp. 982-999
-
-
Lehtokangas, M.1
Saarinen, J.2
Kaski, K.3
Huuntanen, P.4
-
19
-
-
0021481123
-
Multivariate smoothing spline functions
-
19. D.D. Cox, Multivariate smoothing spline functions, SIAM J. Numer. Anal. 21 (4), 789-813 (1984).
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, Issue.4
, pp. 789-813
-
-
Cox, D.D.1
-
21
-
-
0026727494
-
Approximation of a function and its derivative with a neural network
-
21. P. Cardaliaguet and G. Euvrard, Approximation of a function and its derivative with a neural network, Neural Networks 5, 207-220 (1992).
-
(1992)
Neural Networks
, vol.5
, pp. 207-220
-
-
Cardaliaguet, P.1
Euvrard, G.2
-
22
-
-
0002560493
-
Multivariate approximation from the cardinal interpolation point of view
-
Edited by E.W. Cheney, C.K.Chui and L.L. Schumaker
-
22. K. Jetter, Multivariate approximation from the cardinal interpolation point of view, Approximation Theory VII, (Edited by E.W. Cheney, C.K.Chui and L.L. Schumaker), pp. 131-161, (1992).
-
(1992)
Approximation Theory VII
, pp. 131-161
-
-
Jetter, K.1
-
24
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
24. M. Leshno, V.Y. Lin, A. Pinkus and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks 6, 861-867 (1993).
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinkus, A.3
Schocken, S.4
-
25
-
-
0000041417
-
Neural networks for optimal approximation of smooth and analytic functions
-
25. H.N. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions, Neural Computations, 8, 164-177 (1995).
-
(1995)
Neural Computations
, vol.8
, pp. 164-177
-
-
Mhaskar, H.N.1
-
27
-
-
0003106786
-
Approximation by multi-integer translates of functions having global support
-
27. R.-Q. Jia and J. Lei, Approximation by multi-integer translates of functions having global support, Journal of Approximation Theory 72, 2-23 (1993).
-
(1993)
Journal of Approximation Theory
, vol.72
, pp. 2-23
-
-
Jia, R.-Q.1
Lei, J.2
-
28
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
28. A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Transactions on Information Theory 39 (3), 930-945 (1993).
-
(1993)
IEEE Transactions on Information Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.R.1
-
29
-
-
0025503458
-
Constructive approximations for neural networks by sigmoidal functions
-
29. L.K. Jones, Constructive approximations for neural networks by sigmoidal functions, Proceedings of the IEEE 78 (10), 1586-1589 (1990).
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.10
, pp. 1586-1589
-
-
Jones, L.K.1
-
30
-
-
0000796112
-
A simple lemma on greedy approximation in hilbert space and convergence rates for projection pursuit regression and neural network training
-
30. L.K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, The Annals of Statistics 20 (1), 608-613 (1992).
-
(1992)
The Annals of Statistics
, vol.20
, Issue.1
, pp. 608-613
-
-
Jones, L.K.1
-
31
-
-
0003891770
-
Convergence rates of approximation by translates
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology
-
31. F. Girosi and G. Anzellotti, Convergence rates of approximation by translates, Report AI 1288, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, (1992).
-
(1992)
Report AI 1288
-
-
Girosi, F.1
Anzellotti, G.2
-
32
-
-
0000041417
-
Neural network for optimal approximation of smooth and analytic functions
-
32. H.N. Mhaskar, Neural network for optimal approximation of smooth and analytic functions, Neural Computation 8, 164-177 (1996).
-
(1996)
Neural Computation
, vol.8
, pp. 164-177
-
-
Mhaskar, H.N.1
-
34
-
-
0002967446
-
Solution of nonlinear ordinary differential equations by feedforward neural networks
-
34. A.J. Meade and A.A. Fernandez, Solution of nonlinear ordinary differential equations by feedforward neural networks, Mathl. Comput., Modelling 20 (9), 19-44 (1994).
-
(1994)
Mathl. Comput., Modelling
, vol.20
, Issue.9
, pp. 19-44
-
-
Meade, A.J.1
Fernandez, A.A.2
|