메뉴 건너뛰기




Volumn 12, Issue 3, 1998, Pages 213-218

A real-time recurrent learning network structure for data reconciliation

Author keywords

Data reconciliation; Modelling; Recurrent neural networks

Indexed keywords

COMPUTER SIMULATION; DATA PROCESSING; NONLINEAR PROGRAMMING; REAL TIME SYSTEMS;

EID: 0032121783     PISSN: 09541810     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0954-1810(97)00021-6     Document Type: Article
Times cited : (7)

References (23)
  • 1
    • 0028461826 scopus 로고
    • Framework for enhancing fault diagnosis capabilities of artificial neural networks
    • Farell, A. E. & Roat, S. D. Framework for enhancing fault diagnosis capabilities of artificial neural networks. Computers Chem. Engng., 1994, 18, 613-635.
    • (1994) Computers Chem. Engng. , vol.18 , pp. 613-635
    • Farell, A.E.1    Roat, S.D.2
  • 2
    • 0028712072 scopus 로고
    • Estimation of the average chain length of polymers with neural classifiers
    • Orlando, FL, June
    • Meert, K., Estimation of the average chain length of polymers with neural classifiers. In Proceedings of the IEEE International Conference on Neural Networks '94, Orlando, FL, June 1994, Vol. 6, pp. 3822-3827.
    • (1994) Proceedings of the IEEE International Conference on Neural Networks '94 , vol.6 , pp. 3822-3827
    • Meert, K.1
  • 4
    • 0025458937 scopus 로고
    • Process fault detection and diagnosis using neural networks - I. Steady-state processes
    • Venkatasubramanian, V., Vaidyanathan, R. & Yamamoto, Y. Process fault detection and diagnosis using neural networks - I. Steady-state processes. Computers Chem. Engng., 1990, 14, 699-712.
    • (1990) Computers Chem. Engng. , vol.14 , pp. 699-712
    • Venkatasubramanian, V.1    Vaidyanathan, R.2    Yamamoto, Y.3
  • 5
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L. Finding structure in time. Cognitive Sci. , 1990, 14, 179-211.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0003066062 scopus 로고
    • Experimental analysis of the real-time recurrent learning algorithm
    • Williams, R. J. & Zipser, D. Experimental analysis of the real-time recurrent learning algorithm. Connection Sci., 1989, 1, 87-111.
    • (1989) Connection Sci. , vol.1 , pp. 87-111
    • Williams, R.J.1    Zipser, D.2
  • 7
    • 0028756519 scopus 로고
    • How useful are recurrent neural networks for real-time calculation of the average chain length of polymethylmethacrylate?
    • Meert, K. & Catfolis, T. How useful are recurrent neural networks for real-time calculation of the average chain length of polymethylmethacrylate? Process Control and Quality, 1994, 6, 195-201.
    • (1994) Process Control and Quality , vol.6 , pp. 195-201
    • Meert, K.1    Catfolis, T.2
  • 8
    • 0027463301 scopus 로고
    • Dynamic process modelling with recurrent neural networks
    • You, Y. & Nikolaou, M. Dynamic process modelling with recurrent neural networks. AIChE J., 1993, 39, 1654-1667.
    • (1993) AIChE J. , vol.39 , pp. 1654-1667
    • You, Y.1    Nikolaou, M.2
  • 9
    • 0028751190 scopus 로고
    • Generating adaptive models of dynamic systems with recurrent neural networks
    • Orlando, FL, June
    • Catfolis, T., Generating adaptive models of dynamic systems with recurrent neural networks. Proceedings of the IEEE International Conference on Neural Networks, Orlando, FL, June 1994, Vol. 5, pp. 3238-3243.
    • (1994) Proceedings of the IEEE International Conference on Neural Networks , vol.5 , pp. 3238-3243
    • Catfolis, T.1
  • 11
    • 0026931342 scopus 로고
    • The maximum-power test for gross errors in the original constraints in data reconciliation
    • Crowe, C. M. The maximum-power test for gross errors in the original constraints in data reconciliation. Canadian J. Chem. Engng, 1992, 70, 1030-1036.
    • (1992) Canadian J. Chem. Engng , vol.70 , pp. 1030-1036
    • Crowe, C.M.1
  • 12
    • 0026114007 scopus 로고
    • Data reconciliation in generalized linear dynamic systems
    • Darouach, M. & Zasadzinski, M. Data reconciliation in generalized linear dynamic systems. AIChE J., 1991, 37, 193-201.
    • (1991) AIChE J. , vol.37 , pp. 193-201
    • Darouach, M.1    Zasadzinski, M.2
  • 13
    • 0026239908 scopus 로고
    • Simultaneaous strategies for data reconciliation and gross error detection of non-linear systems
    • Tjoa, I. B. & Biegler, T. L. Simultaneaous strategies for data reconciliation and gross error detection of non-linear systems. Computers Chem. Engng., 1991, 15, 679-690.
    • (1991) Computers Chem. Engng. , vol.15 , pp. 679-690
    • Tjoa, I.B.1    Biegler, T.L.2
  • 14
    • 0026933510 scopus 로고
    • Efficient data reconciliation and estimation for dynamic processes using non-linear programming techniques
    • Liebman, M. J., Edgar, T. F. & Lasdon, L. S. Efficient data reconciliation and estimation for dynamic processes using non-linear programming techniques. Computers Chem. Engng., 1992, 16, 963-986.
    • (1992) Computers Chem. Engng. , vol.16 , pp. 963-986
    • Liebman, M.J.1    Edgar, T.F.2    Lasdon, L.S.3
  • 15
    • 0027333732 scopus 로고
    • Control-relevant dynamic data reconciliation and parameter estimation
    • Ramamurthi, Y., Sistu, P. B. & Bequette, B. W. Control-relevant dynamic data reconciliation and parameter estimation. Computers Chem. Engng., 1993, 17, 41-59.
    • (1993) Computers Chem. Engng. , vol.17 , pp. 41-59
    • Ramamurthi, Y.1    Sistu, P.B.2    Bequette, B.W.3
  • 16
    • 0027242791 scopus 로고
    • Backpropagation neural nets with one and two hidden layers
    • de Viliers, J. & Barnard, E. Backpropagation neural nets with one and two hidden layers. IEEE Trans. Neural Networks, 1993, 4, 136-141.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 136-141
    • De Viliers, J.1    Barnard, E.2
  • 17
    • 0026259553 scopus 로고
    • Classification of radar clutter using neural networks
    • Haykin, S. & Deng, C. Classification of radar clutter using neural networks. IEEE Trans. Neural Networks, 1991, 2, 589-600.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 589-600
    • Haykin, S.1    Deng, C.2
  • 18
    • 0028752740 scopus 로고
    • Enhancing the robustness of a feedforward neural network in the presence of missing data
    • Orlando, FL, June
    • Armitage, W. D. and Lo, J. C., Enhancing the robustness of a feedforward neural network in the presence of missing data. Proceedings of the IEEE International Conference on Neural Networks, Orlando, FL, June 1994, Vol. 2, pp. 836-839.
    • (1994) Proceedings of the IEEE International Conference on Neural Networks , vol.2 , pp. 836-839
    • Armitage, W.D.1    Lo, J.C.2
  • 19
    • 0028543466 scopus 로고
    • Dynamic data rectification by recurrent neural networks vs traditional methods
    • Karjala, T. W. & Himmelblau, D. M. Dynamic data rectification by recurrent neural networks vs traditional methods. AIChE J., 1994, 40, 1865-1875.
    • (1994) AIChE J. , vol.40 , pp. 1865-1875
    • Karjala, T.W.1    Himmelblau, D.M.2
  • 20
    • 0026806616 scopus 로고
    • A hybrid neural network-first principles approach to process modelling
    • Psichogios, D. C. & Ungar, L. H. A hybrid neural network-first principles approach to process modelling. AIChE J., 1992, 38, 1499-1511.
    • (1992) AIChE J. , vol.38 , pp. 1499-1511
    • Psichogios, D.C.1    Ungar, L.H.2
  • 21
    • 0030081211 scopus 로고    scopus 로고
    • A neural based architecture for process control based on the RTRL algorithm
    • Chovan, T., Catfolis, T. & Meert, K. A neural based architecture for process control based on the RTRL algorithm. AIChE J., 1996, 42, 493-502.
    • (1996) AIChE J. , vol.42 , pp. 493-502
    • Chovan, T.1    Catfolis, T.2    Meert, K.3
  • 22
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1989, 1, 270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 23
    • 0027309738 scopus 로고
    • A method for improving the real-time recurrent learning algorithm
    • Catfolis, T. A method for improving the real-time recurrent learning algorithm. Neural Networks, 1993, 5, 807-821.
    • (1993) Neural Networks , vol.5 , pp. 807-821
    • Catfolis, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.