-
1
-
-
84990575058
-
Orthonormal Bases of Compactly Supported Wavelets
-
Daubechies, I., “Orthonormal Bases of Compactly Supported Wavelets,” Commun. Pure Appl. Math., Vol. 41, pp. 909-996, 1988.
-
(1988)
Commun. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
2
-
-
84990610636
-
Fast Wavelet Transforms and Numerical Algorithms I
-
Beylkin, G., Coifman, R., and Rokhlin, V., “Fast Wavelet Transforms and Numerical Algorithms I,” Commun. Pure Appl. Math., Vol. 44, pp. 141-183, 1991.
-
(1991)
Commun. Pure Appl. Math.
, vol.44
, pp. 141-183
-
-
Beylkin, G.1
Coifman, R.2
Rokhlin, V.3
-
3
-
-
0002577806
-
Wavelets and Other Bases for Fast Numerical Linear Algebra
-
C. K. Chui, ed., Academic Press, Inc
-
Alpert, B. K., “Wavelets and Other Bases for Fast Numerical Linear Algebra,” Wave lets-A Tutorial in Theory and Applications, C. K. Chui, ed., Academic Press, Inc., 1992, pp. 181-216.
-
(1992)
Wave Lets-A Tutorial in Theory and Applications
, pp. 181-216
-
-
Alpert, B.K.1
-
4
-
-
28144464582
-
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
-
Brandt, A., and Lubrecht, A. A., “Multilevel Matrix Multiplication and Fast Solution of Integral Equations,” J. Compu. Phys., Vol. 90, pp. 348-370, 1990.
-
(1990)
J. Compu. Phys.
, vol.90
, pp. 348-370
-
-
Brandt, A.1
Lubrecht, A.A.2
-
5
-
-
0028485163
-
Fast Multiresolution Algorithms for Matrix-Vector Multiplication
-
Harten, A., and Yad-Shalom, I., “Fast Multiresolution Algorithms for Matrix-Vector Multiplication,” SIAM J. Numer. Anal., Vol. 31, No. 4, pp. 1191-1218, 1994.
-
(1994)
SIAM J. Numer. Anal.
, vol.31
, Issue.4
, pp. 1191-1218
-
-
Harten, A.1
Yad-Shalom, I.2
-
6
-
-
28144438571
-
Wavelets and the Numerical Solution of Partial Differential Equations
-
Qian, S., and Weiss, J., “Wavelets and the Numerical Solution of Partial Differential Equations,” J. Compu. Physics, Vol. 106, pp. 155-175, 1993.
-
(1993)
J. Compu. Physics
, vol.106
, pp. 155-175
-
-
Qian, S.1
Weiss, J.2
-
7
-
-
0028485395
-
Wavelets-Galerkin Solution for One-dimensional Partial Differential Equations
-
Amaratunga, K., Williams, J. R., Qian, S., and Weiss, J., “Wavelets-Galerkin Solution for One-dimensional Partial Differential Equations,” Int. J. Num. Meth. Engg., Vol. 37, pp. 2703-2716, 1994.
-
(1994)
Int. J. Num. Meth. Engg.
, vol.37
, pp. 2703-2716
-
-
Amaratunga, K.1
Williams, J.R.2
Qian, S.3
Weiss, J.4
-
8
-
-
0000043254
-
Analyse Multiresolution des Signaux Aleatoires
-
Vol. t. 312 I
-
Cohen, A., Froment, J., and Istas, J., “Analyse Multiresolution des Signaux Aleatoires,” C. R. Acad. Sci. Paris, Vol. t. 312 I, pp. 567-570, 1991.
-
(1991)
C. R. Acad. Sci. Paris
, pp. 567-570
-
-
Cohen, A.1
Froment, J.2
Istas, J.3
-
9
-
-
0026190345
-
On the Wavelet Transform of Fractional Brownian Motion
-
Ramanathan, J., and Zeifouni, O., “On the Wavelet Transform of Fractional Brownian Motion,” IEEE Trans. Inform. Theory, Vol. IT-37, pp. 1156-1158, 1991.
-
(1991)
IEEE Trans. Inform. Theory
, vol.37
, pp. 1156-1158
-
-
Ramanathan, J.1
Zeifouni, O.2
-
10
-
-
0026679673
-
Correlation Structure of the Discrete Wavelet Coefficients of Fractional Brownian Motion
-
Tewfik, A. H., and Kim, M., “Correlation Structure of the Discrete Wavelet Coefficients of Fractional Brownian Motion,” IEEE Trans. Inform. Theory, Vol. IT-38, pp. 904-909, 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 904-909
-
-
Tewfik, A.H.1
Kim, M.2
-
11
-
-
0027147153
-
The Wavelet Transform of Stochastic Processes with Stationary Increments and Its Application to Fractional Brownian Motion
-
Masry, E., “The Wavelet Transform of Stochastic Processes with Stationary Increments and Its Application to Fractional Brownian Motion,” IEEE Trans. Inform. Theory, Vol. IT-39, pp. 260-264, 1993.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 260-264
-
-
Masry, E.1
-
12
-
-
0026972292
-
Spectral Decomposition by Wavelet Approximation to the Karhunen-Loeve Transform
-
Greenshields, I. R., and Rosiene, J. A., “Spectral Decomposition by Wavelet Approximation to the Karhunen-Loeve Transform,” Ophthalmic Technologies, SPIE, Vol. 1644, pp. 282-286, 1992.
-
(1992)
Ophthalmic Technologies, SPIE
, vol.1644
, pp. 282-286
-
-
Greenshields, I.R.1
Rosiene, J.A.2
-
13
-
-
0025462413
-
A Karhunen-Loeve like Expansion for 1/f Processes via Wavelets
-
Wornell, G. W., “A Karhunen-Loeve like Expansion for 1/f Processes via Wavelets,” IEEE Trans. Inform. Theory, Vol. IT-36, pp. 859-861, 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 859-861
-
-
Wornell, G.W.1
-
14
-
-
0028465612
-
A Wavelet-based KL-like Expansion for Wide-sense Stationary Random Processes
-
Zhang, J., and Walter, G., “ A Wavelet-based KL-like Expansion for Wide-sense Stationary Random Processes,” 1737-1745, IEEE Trans. Signal Proc., Vol. 42, No. 7, 1994.
-
(1994)
IEEE Trans. Signal Proc
, vol.42
, Issue.7
, pp. 1737-1745
-
-
Zhang, J.1
Walter, G.2
-
15
-
-
0028466653
-
Wavelet Representations of Stochastic Processes and Multiresolution Stochastic Models
-
Dijkerman, R. W., and Mazumdar, R. R., “Wavelet Representations of Stochastic Processes and Multiresolution Stochastic Models” IEEE Trans. Signal Proc., Vol. 42, No. 7, pp. 1640-1652, 1994.
-
(1994)
IEEE Trans. Signal Proc.
, vol.42
, Issue.7
, pp. 1640-1652
-
-
Dijkerman, R.W.1
Mazumdar, R.R.2
-
19
-
-
0003462953
-
-
New York, John Wiley
-
Van-Trees, H. L., Detection, Estimation, and Modulation Theory, Part I, New York, John Wiley, 1968.
-
(1968)
Detection, Estimation, and Modulation Theory
-
-
Van-Trees, H.L.1
-
21
-
-
0016554233
-
Application of Hamilton’s Law of Varying Action
-
Bailey, C. D., “Application of Hamilton’s Law of Varying Action,” AIAA J., Vol. 13, pp. 1154-1157, 1975.
-
(1975)
AIAA J.
, vol.13
, pp. 1154-1157
-
-
Bailey, C.D.1
-
22
-
-
0016923716
-
Method of Ritz Applied to the Equation of Hamilton
-
Bailey, C. D., “Method of Ritz Applied to the Equation of Hamilton,” Comput. Meth. Appl. Mech. Engng, Vol. 7, pp. 235-247, 1976.
-
(1976)
Comput. Meth. Appl. Mech. Engng
, vol.7
, pp. 235-247
-
-
Bailey, C.D.1
-
23
-
-
0011626267
-
Implementing Hamilton’s Law of Varying Action with Shifted Legendre Polynomials
-
Hitzl, D. L., “Implementing Hamilton’s Law of Varying Action with Shifted Legendre Polynomials,” J. Comput. Phys., Vol. 38, pp. 185-211, 1980.
-
(1980)
J. Comput. Phys.
, vol.38
, pp. 185-211
-
-
Hitzl, D.L.1
-
24
-
-
0017983278
-
Unconstrained Variational Statements for Initial and Boundary-value Problems
-
Simkins, T. E., “Unconstrained Variational Statements for Initial and Boundary-value Problems,” AIAA J., Vol. 16, pp. 559-563, 1978.
-
(1978)
AIAA J.
, vol.16
, pp. 559-563
-
-
Simkins, T.E.1
-
25
-
-
0020125243
-
Hamilton’s Principle, Hamilton’s Law, 6 Correct Formulations,”
-
Baruch, M., and Riff, R., “Hamilton’s Principle, Hamilton’s Law, 6” Correct Formulations,” AIAA J., Vol. 20, pp. 687-692, 1982.
-
(1982)
AIAA J.
, vol.20
, pp. 687-692
-
-
Baruch, M.1
Riff, R.2
-
26
-
-
0023266886
-
A Novel, Computationally Efficient Approach for Hamilton’s Law of Varying Action
-
Agrawal, O. P., and Saigal, S., “A Novel, Computationally Efficient Approach for Hamilton’s Law of Varying Action,” Int. J. Mech. Sci., Vol. 29, pp. 285-292, 1987.
-
(1987)
Int. J. Mech. Sci.
, vol.29
, pp. 285-292
-
-
Agrawal, O.P.1
Saigal, S.2
-
27
-
-
0021589983
-
Dynamic Response of Mechanical Systems by a Weak Hamiltonian Formulation
-
Borri, M., Ghiringhelli, G. L., Lanz, M., Mantagazza, P., and Merlini, T., “Dynamic Response of Mechanical Systems by a Weak Hamiltonian Formulation,” Computers and Structures, Vol. 20, pp. 495-508, 1985.
-
(1985)
Computers and Structures
, vol.20
, pp. 495-508
-
-
Borri, M.1
Ghiringhelli, G.L.2
Lanz, M.3
Mantagazza, P.4
Merlini, T.5
-
28
-
-
0003022338
-
Hp-Version Finite Elements for the Space Time Domain
-
Peters, D. A., and Izadpanah, A., “hp-Version Finite Elements for the Space Time Domain,” Comput. Mech., Vol. 3, pp. 73-88, 1988.
-
(1988)
Comput. Mech.
, vol.3
, pp. 73-88
-
-
Peters, D.A.1
Izadpanah, A.2
-
29
-
-
85003383696
-
Weak Hamiltonian Finite Element Method for Optimal Control Problems
-
Hodges, D. H., and Bless, R. R., “Weak Hamiltonian Finite Element Method for Optimal Control Problems,” J. Guidance, Vol. 14, pp. 148-156, 1991.
-
(1991)
J. Guidance
, vol.14
, pp. 148-156
-
-
Hodges, D.H.1
Bless, R.R.2
-
30
-
-
0011590820
-
Design Sensitivity Analysis of Dynamic Systems Using Hamilton’s Law of Varying Action
-
Sonti, V. R., and Agrawal, O. P., “Design Sensitivity Analysis of Dynamic Systems Using Hamilton’s Law of Varying Action,” Int. J. Mech. Sci., Vol. 37, No. 6, pp. 601-613, 1995.
-
(1995)
Int. J. Mech. Sci.
, vol.37
, Issue.6
, pp. 601-613
-
-
Sonti, V.R.1
Agrawal, O.P.2
-
31
-
-
0030563724
-
Modeling of Stochastic Dynamic Systems Using Hamilton’s Law of Varying Action
-
Agrawal, O. P., and Sonti, V. R., “Modeling of Stochastic Dynamic Systems Using Hamilton’s Law of Varying Action,” J. Sound and Vibrations, Vol. 192, No. 2, pp. 399-412, 1996.
-
(1996)
J. Sound and Vibrations
, vol.192
, Issue.2
, pp. 399-412
-
-
Agrawal, O.P.1
Sonti, V.R.2
-
32
-
-
0011158295
-
Hamilton’s Law of Varying Action. 2. Direct Optimal Control of Linear Systems
-
Oz, H., and Adiguzel, E., “Hamilton’s Law of Varying Action. 2. Direct Optimal Control of Linear Systems,” J. Sound and Vibrations, Vol. 179, No. 4, pp. 711-724, 1995.
-
(1995)
J. Sound and Vibrations
, vol.179
, Issue.4
, pp. 711-724
-
-
Oz, H.1
Adiguzel, E.2
-
33
-
-
0029373562
-
Direct Optimal Control of Nonlinear Systems via Hamilton’s Law of Varying Action, ASME
-
Adiguzel, E., and Oz, H., “Direct Optimal Control of Nonlinear Systems via Hamilton’s Law of Varying Action,” ASME Journal of Dynamic Systems. Measurement, and Control, Vol. 117, No. 3, pp. 262-269, 1995.
-
(1995)
Journal of Dynamic Systems. Measurement, and Control
, vol.117
, Issue.3
, pp. 262-269
-
-
Adiguzel, E.1
Oz, H.2
|