메뉴 건너뛰기




Volumn 120, Issue 3, 1998, Pages 763-769

Application of wavelets in modeling stochastic dynamic systems

Author keywords

[No Author keywords available]

Indexed keywords

ALGEBRA; APPROXIMATION THEORY; CORRELATION METHODS; EIGENVALUES AND EIGENFUNCTIONS; INTEGRAL EQUATIONS; POLYNOMIALS; WAVELET TRANSFORMS;

EID: 0032116224     PISSN: 10489002     EISSN: 15288927     Source Type: Journal    
DOI: 10.1115/1.2893895     Document Type: Article
Times cited : (10)

References (34)
  • 1
    • 84990575058 scopus 로고
    • Orthonormal Bases of Compactly Supported Wavelets
    • Daubechies, I., “Orthonormal Bases of Compactly Supported Wavelets,” Commun. Pure Appl. Math., Vol. 41, pp. 909-996, 1988.
    • (1988) Commun. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 2
    • 84990610636 scopus 로고
    • Fast Wavelet Transforms and Numerical Algorithms I
    • Beylkin, G., Coifman, R., and Rokhlin, V., “Fast Wavelet Transforms and Numerical Algorithms I,” Commun. Pure Appl. Math., Vol. 44, pp. 141-183, 1991.
    • (1991) Commun. Pure Appl. Math. , vol.44 , pp. 141-183
    • Beylkin, G.1    Coifman, R.2    Rokhlin, V.3
  • 3
    • 0002577806 scopus 로고
    • Wavelets and Other Bases for Fast Numerical Linear Algebra
    • C. K. Chui, ed., Academic Press, Inc
    • Alpert, B. K., “Wavelets and Other Bases for Fast Numerical Linear Algebra,” Wave lets-A Tutorial in Theory and Applications, C. K. Chui, ed., Academic Press, Inc., 1992, pp. 181-216.
    • (1992) Wave Lets-A Tutorial in Theory and Applications , pp. 181-216
    • Alpert, B.K.1
  • 4
    • 28144464582 scopus 로고
    • Multilevel Matrix Multiplication and Fast Solution of Integral Equations
    • Brandt, A., and Lubrecht, A. A., “Multilevel Matrix Multiplication and Fast Solution of Integral Equations,” J. Compu. Phys., Vol. 90, pp. 348-370, 1990.
    • (1990) J. Compu. Phys. , vol.90 , pp. 348-370
    • Brandt, A.1    Lubrecht, A.A.2
  • 5
    • 0028485163 scopus 로고
    • Fast Multiresolution Algorithms for Matrix-Vector Multiplication
    • Harten, A., and Yad-Shalom, I., “Fast Multiresolution Algorithms for Matrix-Vector Multiplication,” SIAM J. Numer. Anal., Vol. 31, No. 4, pp. 1191-1218, 1994.
    • (1994) SIAM J. Numer. Anal. , vol.31 , Issue.4 , pp. 1191-1218
    • Harten, A.1    Yad-Shalom, I.2
  • 6
    • 28144438571 scopus 로고
    • Wavelets and the Numerical Solution of Partial Differential Equations
    • Qian, S., and Weiss, J., “Wavelets and the Numerical Solution of Partial Differential Equations,” J. Compu. Physics, Vol. 106, pp. 155-175, 1993.
    • (1993) J. Compu. Physics , vol.106 , pp. 155-175
    • Qian, S.1    Weiss, J.2
  • 7
    • 0028485395 scopus 로고
    • Wavelets-Galerkin Solution for One-dimensional Partial Differential Equations
    • Amaratunga, K., Williams, J. R., Qian, S., and Weiss, J., “Wavelets-Galerkin Solution for One-dimensional Partial Differential Equations,” Int. J. Num. Meth. Engg., Vol. 37, pp. 2703-2716, 1994.
    • (1994) Int. J. Num. Meth. Engg. , vol.37 , pp. 2703-2716
    • Amaratunga, K.1    Williams, J.R.2    Qian, S.3    Weiss, J.4
  • 8
    • 0000043254 scopus 로고
    • Analyse Multiresolution des Signaux Aleatoires
    • Vol. t. 312 I
    • Cohen, A., Froment, J., and Istas, J., “Analyse Multiresolution des Signaux Aleatoires,” C. R. Acad. Sci. Paris, Vol. t. 312 I, pp. 567-570, 1991.
    • (1991) C. R. Acad. Sci. Paris , pp. 567-570
    • Cohen, A.1    Froment, J.2    Istas, J.3
  • 9
    • 0026190345 scopus 로고
    • On the Wavelet Transform of Fractional Brownian Motion
    • Ramanathan, J., and Zeifouni, O., “On the Wavelet Transform of Fractional Brownian Motion,” IEEE Trans. Inform. Theory, Vol. IT-37, pp. 1156-1158, 1991.
    • (1991) IEEE Trans. Inform. Theory , vol.37 , pp. 1156-1158
    • Ramanathan, J.1    Zeifouni, O.2
  • 10
    • 0026679673 scopus 로고
    • Correlation Structure of the Discrete Wavelet Coefficients of Fractional Brownian Motion
    • Tewfik, A. H., and Kim, M., “Correlation Structure of the Discrete Wavelet Coefficients of Fractional Brownian Motion,” IEEE Trans. Inform. Theory, Vol. IT-38, pp. 904-909, 1992.
    • (1992) IEEE Trans. Inform. Theory , vol.38 , pp. 904-909
    • Tewfik, A.H.1    Kim, M.2
  • 11
    • 0027147153 scopus 로고
    • The Wavelet Transform of Stochastic Processes with Stationary Increments and Its Application to Fractional Brownian Motion
    • Masry, E., “The Wavelet Transform of Stochastic Processes with Stationary Increments and Its Application to Fractional Brownian Motion,” IEEE Trans. Inform. Theory, Vol. IT-39, pp. 260-264, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 260-264
    • Masry, E.1
  • 12
    • 0026972292 scopus 로고
    • Spectral Decomposition by Wavelet Approximation to the Karhunen-Loeve Transform
    • Greenshields, I. R., and Rosiene, J. A., “Spectral Decomposition by Wavelet Approximation to the Karhunen-Loeve Transform,” Ophthalmic Technologies, SPIE, Vol. 1644, pp. 282-286, 1992.
    • (1992) Ophthalmic Technologies, SPIE , vol.1644 , pp. 282-286
    • Greenshields, I.R.1    Rosiene, J.A.2
  • 13
    • 0025462413 scopus 로고
    • A Karhunen-Loeve like Expansion for 1/f Processes via Wavelets
    • Wornell, G. W., “A Karhunen-Loeve like Expansion for 1/f Processes via Wavelets,” IEEE Trans. Inform. Theory, Vol. IT-36, pp. 859-861, 1990.
    • (1990) IEEE Trans. Inform. Theory , vol.36 , pp. 859-861
    • Wornell, G.W.1
  • 14
    • 0028465612 scopus 로고
    • A Wavelet-based KL-like Expansion for Wide-sense Stationary Random Processes
    • Zhang, J., and Walter, G., “ A Wavelet-based KL-like Expansion for Wide-sense Stationary Random Processes,” 1737-1745, IEEE Trans. Signal Proc., Vol. 42, No. 7, 1994.
    • (1994) IEEE Trans. Signal Proc , vol.42 , Issue.7 , pp. 1737-1745
    • Zhang, J.1    Walter, G.2
  • 15
    • 0028466653 scopus 로고
    • Wavelet Representations of Stochastic Processes and Multiresolution Stochastic Models
    • Dijkerman, R. W., and Mazumdar, R. R., “Wavelet Representations of Stochastic Processes and Multiresolution Stochastic Models” IEEE Trans. Signal Proc., Vol. 42, No. 7, pp. 1640-1652, 1994.
    • (1994) IEEE Trans. Signal Proc. , vol.42 , Issue.7 , pp. 1640-1652
    • Dijkerman, R.W.1    Mazumdar, R.R.2
  • 21
    • 0016554233 scopus 로고
    • Application of Hamilton’s Law of Varying Action
    • Bailey, C. D., “Application of Hamilton’s Law of Varying Action,” AIAA J., Vol. 13, pp. 1154-1157, 1975.
    • (1975) AIAA J. , vol.13 , pp. 1154-1157
    • Bailey, C.D.1
  • 22
    • 0016923716 scopus 로고
    • Method of Ritz Applied to the Equation of Hamilton
    • Bailey, C. D., “Method of Ritz Applied to the Equation of Hamilton,” Comput. Meth. Appl. Mech. Engng, Vol. 7, pp. 235-247, 1976.
    • (1976) Comput. Meth. Appl. Mech. Engng , vol.7 , pp. 235-247
    • Bailey, C.D.1
  • 23
    • 0011626267 scopus 로고
    • Implementing Hamilton’s Law of Varying Action with Shifted Legendre Polynomials
    • Hitzl, D. L., “Implementing Hamilton’s Law of Varying Action with Shifted Legendre Polynomials,” J. Comput. Phys., Vol. 38, pp. 185-211, 1980.
    • (1980) J. Comput. Phys. , vol.38 , pp. 185-211
    • Hitzl, D.L.1
  • 24
    • 0017983278 scopus 로고
    • Unconstrained Variational Statements for Initial and Boundary-value Problems
    • Simkins, T. E., “Unconstrained Variational Statements for Initial and Boundary-value Problems,” AIAA J., Vol. 16, pp. 559-563, 1978.
    • (1978) AIAA J. , vol.16 , pp. 559-563
    • Simkins, T.E.1
  • 25
    • 0020125243 scopus 로고
    • Hamilton’s Principle, Hamilton’s Law, 6 Correct Formulations,”
    • Baruch, M., and Riff, R., “Hamilton’s Principle, Hamilton’s Law, 6” Correct Formulations,” AIAA J., Vol. 20, pp. 687-692, 1982.
    • (1982) AIAA J. , vol.20 , pp. 687-692
    • Baruch, M.1    Riff, R.2
  • 26
    • 0023266886 scopus 로고
    • A Novel, Computationally Efficient Approach for Hamilton’s Law of Varying Action
    • Agrawal, O. P., and Saigal, S., “A Novel, Computationally Efficient Approach for Hamilton’s Law of Varying Action,” Int. J. Mech. Sci., Vol. 29, pp. 285-292, 1987.
    • (1987) Int. J. Mech. Sci. , vol.29 , pp. 285-292
    • Agrawal, O.P.1    Saigal, S.2
  • 28
    • 0003022338 scopus 로고
    • Hp-Version Finite Elements for the Space Time Domain
    • Peters, D. A., and Izadpanah, A., “hp-Version Finite Elements for the Space Time Domain,” Comput. Mech., Vol. 3, pp. 73-88, 1988.
    • (1988) Comput. Mech. , vol.3 , pp. 73-88
    • Peters, D.A.1    Izadpanah, A.2
  • 29
    • 85003383696 scopus 로고
    • Weak Hamiltonian Finite Element Method for Optimal Control Problems
    • Hodges, D. H., and Bless, R. R., “Weak Hamiltonian Finite Element Method for Optimal Control Problems,” J. Guidance, Vol. 14, pp. 148-156, 1991.
    • (1991) J. Guidance , vol.14 , pp. 148-156
    • Hodges, D.H.1    Bless, R.R.2
  • 30
    • 0011590820 scopus 로고
    • Design Sensitivity Analysis of Dynamic Systems Using Hamilton’s Law of Varying Action
    • Sonti, V. R., and Agrawal, O. P., “Design Sensitivity Analysis of Dynamic Systems Using Hamilton’s Law of Varying Action,” Int. J. Mech. Sci., Vol. 37, No. 6, pp. 601-613, 1995.
    • (1995) Int. J. Mech. Sci. , vol.37 , Issue.6 , pp. 601-613
    • Sonti, V.R.1    Agrawal, O.P.2
  • 31
    • 0030563724 scopus 로고    scopus 로고
    • Modeling of Stochastic Dynamic Systems Using Hamilton’s Law of Varying Action
    • Agrawal, O. P., and Sonti, V. R., “Modeling of Stochastic Dynamic Systems Using Hamilton’s Law of Varying Action,” J. Sound and Vibrations, Vol. 192, No. 2, pp. 399-412, 1996.
    • (1996) J. Sound and Vibrations , vol.192 , Issue.2 , pp. 399-412
    • Agrawal, O.P.1    Sonti, V.R.2
  • 32
    • 0011158295 scopus 로고
    • Hamilton’s Law of Varying Action. 2. Direct Optimal Control of Linear Systems
    • Oz, H., and Adiguzel, E., “Hamilton’s Law of Varying Action. 2. Direct Optimal Control of Linear Systems,” J. Sound and Vibrations, Vol. 179, No. 4, pp. 711-724, 1995.
    • (1995) J. Sound and Vibrations , vol.179 , Issue.4 , pp. 711-724
    • Oz, H.1    Adiguzel, E.2
  • 33
    • 0029373562 scopus 로고
    • Direct Optimal Control of Nonlinear Systems via Hamilton’s Law of Varying Action, ASME
    • Adiguzel, E., and Oz, H., “Direct Optimal Control of Nonlinear Systems via Hamilton’s Law of Varying Action,” ASME Journal of Dynamic Systems. Measurement, and Control, Vol. 117, No. 3, pp. 262-269, 1995.
    • (1995) Journal of Dynamic Systems. Measurement, and Control , vol.117 , Issue.3 , pp. 262-269
    • Adiguzel, E.1    Oz, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.