메뉴 건너뛰기




Volumn 31, Issue 17, 1998, Pages 4037-4048

Generalization errors of the simple perceptron

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0032071385     PISSN: 03054470     EISSN: None     Source Type: Journal    
DOI: 10.1088/0305-4470/31/17/013     Document Type: Article
Times cited : (7)

References (35)
  • 1
    • 0000729504 scopus 로고
    • Statistical theory of learning curves under entropic loss criterion
    • Amari S and Murata N 1993 Statistical theory of learning curves under entropic loss criterion Neural Comput. 5 140-53
    • (1993) Neural Comput. , vol.5 , pp. 140-153
    • Amari, S.1    Murata, N.2
  • 3
    • 0040175696 scopus 로고
    • Asymptotic statistical theory of overtraining and cross-validation
    • Department of Mathematical Engineering and Information Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
    • Amari S, Murata N, Müller K-R, Finke M and Yang H 1995b Asymptotic statistical theory of overtraining and cross-validation METR 95-06 Department of Mathematical Engineering and Information Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
    • (1995) METR 95-06
    • Amari, S.1    Murata, N.2    Müller, K.-R.3    Finke, M.4    Yang, H.5
  • 4
    • 0000750020 scopus 로고
    • The perceptron algorithm is fast for nonmalicious distribution
    • Baum E B 1990 The perceptron algorithm is fast for nonmalicious distribution Neural Comput. 2 248
    • (1990) Neural Comput. , vol.2 , pp. 248
    • Baum, E.B.1
  • 5
    • 0001160588 scopus 로고
    • What size net gives valid generalization
    • Baum E B and Haussler D 1989 What size net gives valid generalization Neural Comput. 4 151-60
    • (1989) Neural Comput. , vol.4 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 6
    • 0000539898 scopus 로고
    • How tight are the Vapnik-Chervonenkis bounds
    • Cohn D and Tesauro G 1992 How tight are the Vapnik-Chervonenkis bounds Neural Comput. 4 249-69
    • (1992) Neural Comput. , vol.4 , pp. 249-269
    • Cohn, D.1    Tesauro, G.2
  • 7
    • 0010880736 scopus 로고
    • Limit distributions for order statistics. I
    • Balkema A A and De Haan L 1978 Limit distributions for order statistics. I Theory Prob. Appl. XXIII 77-92
    • (1978) Theory Prob. Appl. , vol.23 , pp. 77-92
    • Balkema, A.A.1    De Haan, L.2
  • 8
    • 0010883030 scopus 로고
    • Limit distributions for order statistics. II
    • Balkema A A and De Haan L 1978 Limit distributions for order statistics. II Theory Prob. Appl. XXIII 341-58
    • (1978) Theory Prob. Appl. , vol.23 , pp. 341-358
    • Balkema, A.A.1    De Haan, L.2
  • 9
    • 0039768792 scopus 로고    scopus 로고
    • Universality classes for extreme value statistics
    • Bouchaud J-P and Mézard M 1997 Universality classes for extreme value statistics J. Phys. A: Math. Gen. 30 7997-8015
    • (1997) J. Phys. A: Math. Gen. , vol.30 , pp. 7997-8015
    • Bouchaud, J.-P.1    Mézard, M.2
  • 10
    • 21344483984 scopus 로고
    • Statistical mechanics calculation of Vapnik Chervonenkis bounds for perceptron
    • Engel A and den Broeck C V 1993 Statistical mechanics calculation of Vapnik Chervonenkis bounds for perceptron J. Phys. A: Math. Gen. 26 6893-914
    • (1993) J. Phys. A: Math. Gen. , vol.26 , pp. 6893-6914
    • Engel, A.1    Den Broeck, C.V.2
  • 11
    • 0001050080 scopus 로고    scopus 로고
    • Behaviours of spike output jitter in the integrate-and-fire model
    • Feng J 1997 Behaviours of spike output jitter in the integrate-and-fire model Phys. Rev. Lett. 79 4505-8
    • (1997) Phys. Rev. Lett. , vol.79 , pp. 4505-4508
    • Feng, J.1
  • 12
    • 0030628345 scopus 로고    scopus 로고
    • Lyapunov functions for neural nets with nondifferentiable input-output characteristics
    • Feng J 1997 Lyapunov functions for neural nets with nondifferentiable input-output characteristics Neural Comput. 9 45-51
    • (1997) Neural Comput. , vol.9 , pp. 45-51
    • Feng, J.1
  • 13
    • 0039584314 scopus 로고    scopus 로고
    • Fixed-point attractor analysis for a class of neurodynamics
    • Feng, J., and Brown, D.(1998), Fixed-point attractor analysis for a class of neurodynamics Neural Comput. 10 189-213
    • (1998) Neural Comput. , vol.10 , pp. 189-213
    • Feng, J.1    Brown, D.2
  • 14
    • 0032579119 scopus 로고    scopus 로고
    • Spike output jitter, mean firing time and coefficient of variation
    • Feng J and Brown D 1998 Spike output jitter, mean firing time and coefficient of variation J. Phys. A: Math. Gen. 31 1239-52
    • (1998) J. Phys. A: Math. Gen. , vol.31 , pp. 1239-1252
    • Feng, J.1    Brown, D.2
  • 15
    • 0005863692 scopus 로고    scopus 로고
    • Qualitative behaviors of some simple neural networks
    • Feng J and Hadeler K P 1996 Qualitative behaviors of some simple neural networks J. Phys. A: Math. Gen. 29 5019-33
    • (1996) J. Phys. A: Math. Gen. , vol.29 , pp. 5019-5033
    • Feng, J.1    Hadeler, K.P.2
  • 16
    • 0001148797 scopus 로고    scopus 로고
    • On neurodynamics with limiter function and Linsker's developmental model
    • Feng J, Pan H and Roychowdhury V P 1996 On neurodynamics with limiter function and Linsker's developmental model Neural Comput. 8 1003-19
    • (1996) Neural Comput. , vol.8 , pp. 1003-1019
    • Feng, J.1    Pan, H.2    Roychowdhury, V.P.3
  • 17
    • 0009481798 scopus 로고
    • The SLLN for the free-energy of the Hopfield and spin glass model
    • Feng J and Tirozzi B 1995 The SLLN for the free-energy of the Hopfield and spin glass model Helv. Phys. Acta 68 365-79
    • (1995) Helv. Phys. Acta , vol.68 , pp. 365-379
    • Feng, J.1    Tirozzi, B.2
  • 18
  • 21
    • 0006842954 scopus 로고
    • Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension
    • San Mateo, CA: Morgan Kaufmann
    • Haussler D, Kearns M and Shapire R 1991 Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension Proc. 4th Annu. Workshop on computational Learning Theory (San Mateo, CA: Morgan Kaufmann) pp 61-74
    • (1991) Proc. 4th Annu. Workshop on Computational Learning Theory , pp. 61-74
    • Haussler, D.1    Kearns, M.2    Shapire, R.3
  • 22
    • 33747598766 scopus 로고
    • Predicting {0, 1} functions on randomly drawn points
    • San Mateo, CA: Morgan Kaufmann
    • Haussler D, Littlestone N and Warmuth K 1988 Predicting {0, 1} functions on randomly drawn points Proc. COLT'88 (San Mateo, CA: Morgan Kaufmann) pp 280-95
    • (1988) Proc. COLT'88 , pp. 280-295
    • Haussler, D.1    Littlestone, N.2    Warmuth, K.3
  • 25
    • 0025508916 scopus 로고
    • A statistical approach to learning and generalization in layered neural networks
    • Levin E, Tishby N and Solla S A 1990 A statistical approach to learning and generalization in layered neural networks Proc. IEEE 78 1568-74
    • (1990) Proc. IEEE , vol.78 , pp. 1568-1574
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 26
    • 0028544395 scopus 로고
    • Network information criterion-determinate the number of hidden units for an artificial neural network model
    • Murata N, Yoshizawa S and Amari S 1994 Network information criterion-determinate the number of hidden units for an artificial neural network model IEEE Trans. NN 6 865-72
    • (1994) IEEE Trans. NN , vol.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 27
    • 0041081792 scopus 로고
    • Calculation of the learning curve of Bayes optimal classification algorithm for learning perceptron with noise
    • Opper M and Haussler D 1991 Calculation of the learning curve of Bayes optimal classification algorithm for learning perceptron with noise Proc. 4th Annu. Workshop on Computer Learning Theory pp 75-87
    • (1991) Proc. 4th Annu. Workshop on Computer Learning Theory , pp. 75-87
    • Opper, M.1    Haussler, D.2
  • 28
    • 0000285881 scopus 로고
    • Bounds for predictive errors in the statistical mechanics of supervised learning
    • Opper M and Haussler D 1995 Bounds for predictive errors in the statistical mechanics of supervised learning Phys. Rev. Lett. 75 3772-5
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 3772-3775
    • Opper, M.1    Haussler, D.2
  • 29
    • 0038991472 scopus 로고
    • Generalization transitions in hidden-layer neural networks for 3rd-order feature discrimination
    • Romeo A 1993 Generalization transitions in hidden-layer neural networks for 3rd-order feature discrimination Phys. Rev. E 47 2162-71
    • (1993) Phys. Rev. E , vol.47 , pp. 2162-2171
    • Romeo, A.1
  • 30
    • 0000755030 scopus 로고
    • Statistical mechanics of learning from examples
    • Seung H S, Sompolinsky H and Tishbby N 1992 Statistical mechanics of learning from examples Phys. Rev. A 45 6056-91
    • (1992) Phys. Rev. A , vol.45 , pp. 6056-6091
    • Seung, H.S.1    Sompolinsky, H.2    Tishbby, N.3
  • 31
    • 84956262903 scopus 로고
    • Learning in a 2-layer neural network of edge detectors
    • Sompolinsky H and Tishby N 1990 Learning in a 2-layer neural network of edge detectors Europhys. Lett. 13 567-72
    • (1990) Europhys. Lett. , vol.13 , pp. 567-572
    • Sompolinsky, H.1    Tishby, N.2
  • 32
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik V N and Chervonenkis A Y 1971 On the uniform convergence of relative frequencies of events to their probabilities Theory Prob. Appl. 16 264-80
    • (1971) Theory Prob. Appl. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 33
    • 0001205879 scopus 로고
    • Measuring the VC dimension of a learning machine
    • Vapnik E, Levin E and LeCun Y 1994 Measuring the VC dimension of a learning machine Neural Comput. 5 851-76
    • (1994) Neural Comput. , vol.5 , pp. 851-876
    • Vapnik, E.1    Levin, E.2    LeCun, Y.3
  • 34
    • 21144484106 scopus 로고
    • The statistical mechanics of learning a rule
    • Watkin T L H, Rau A and Biehl M 1993 The statistical mechanics of learning a rule Rev. Mod. Phys. 65 499-556
    • (1993) Rev. Mod. Phys. , vol.65 , pp. 499-556
    • Watkin, T.L.H.1    Rau, A.2    Biehl, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.