메뉴 건너뛰기




Volumn 9, Issue 1, 1997, Pages 43-49

Lyapunov functions for neural nets with nondifferentiable input-output characteristics

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; NERVE CELL; NONLINEAR SYSTEM; PHYSIOLOGY; STATISTICAL MODEL; STATISTICS;

EID: 0030628345     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1997.9.1.43     Document Type: Article
Times cited : (18)

References (15)
  • 1
    • 0001566375 scopus 로고
    • Role of noises in neural networks
    • Albeverio, S., Feng, J., and Qian, M. 1995. Role of noises in neural networks. Phys. Rev. E. 52, 6593-6606.
    • (1995) Phys. Rev. E. , vol.52 , pp. 6593-6606
    • Albeverio, S.1    Feng, J.2    Qian, M.3
  • 3
    • 0343073935 scopus 로고
    • A rigorous analysis of Linsker-type Hebbian learning
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, eds., MIT Press, Cambridge, MA
    • Feng, J., Pan, H., and Roychowdhury, V. P. 1995. A rigorous analysis of Linsker-type Hebbian learning. In Advances in Neural Information Processing Systems 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, eds., pp. 319-326. MIT Press, Cambridge, MA.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 319-326
    • Feng, J.1    Pan, H.2    Roychowdhury, V.P.3
  • 4
    • 0001148797 scopus 로고    scopus 로고
    • On neurodynamics with limiter function and Linsker's developmental model
    • Feng, J., Pan, H., and Roychowdhury, V. P. 1996. On neurodynamics with limiter function and Linsker's developmental model. Neural Computation 8(5), 1003-1019.
    • (1996) Neural Computation , vol.8 , Issue.5 , pp. 1003-1019
    • Feng, J.1    Pan, H.2    Roychowdhury, V.P.3
  • 5
    • 0009481798 scopus 로고
    • The SLLN for the free-energy of the Hopfield and spin glass model
    • Feng, J., and Tirozzi, B. 1995. The SLLN for the free-energy of the Hopfield and spin glass model. Helvetica Physica Acta 68, 365-379.
    • (1995) Helvetica Physica Acta , vol.68 , pp. 365-379
    • Feng, J.1    Tirozzi, B.2
  • 6
    • 5844222845 scopus 로고    scopus 로고
    • An application of the saturated attractor analysis to three typical models
    • R. Trappl, ed., World Scientific, Singapore
    • Feng, J., and Tirozzi, B. 1996. An application of the saturated attractor analysis to three typical models. In Cybernetic and Systems '96, R. Trappl, ed., pp. 1102-1107. World Scientific, Singapore.
    • (1996) Cybernetic and Systems '96 , pp. 1102-1107
    • Feng, J.1    Tirozzi, B.2
  • 7
    • 38249001635 scopus 로고
    • Stability and optimization analyses of the generalized Brain-State-in-a-Box neural network model
    • Golden, R. M. 1993. Stability and optimization analyses of the generalized Brain-State-in-a-Box neural network model. Journal of Mathematical Psychology 37, 282-298.
    • (1993) Journal of Mathematical Psychology , vol.37 , pp. 282-298
    • Golden, R.M.1
  • 9
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanisms, and architectures
    • Grossberg, S. 1988. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks 1, 17-61.
    • (1988) Neural Networks , vol.1 , pp. 17-61
    • Grossberg, S.1
  • 10
    • 0011890590 scopus 로고
    • Distributed dynamics in neural networks
    • Herz, A. V. M., and Marcus, C. M. 1993. Distributed dynamics in neural networks. Phys. Rev. E 47, 2155-2161.
    • (1993) Phys. Rev. E , vol.47 , pp. 2155-2161
    • Herz, A.V.M.1    Marcus, C.M.2
  • 11
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554-2558.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 12
    • 0004469897 scopus 로고
    • Neurons with graded response have computational properties like those of two-state neurons
    • Hopfield, J. J. 1984. Neurons with graded response have computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088-3092.
    • (1984) Proc. Natl. Acad. Sci. USA , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 13
    • 0026624070 scopus 로고
    • Dynamical analysis of the Brain-State-in-a-Box (BSB) neural models
    • Hui, S., and Zak, S. H. 1992. Dynamical analysis of the Brain-State-in-a-Box (BSB) neural models. IEEE Transactions on Neural Networks 3, 86-94.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 86-94
    • Hui, S.1    Zak, S.H.2
  • 14
    • 0003346575 scopus 로고
    • From basic network principle to neural architecture (series). Proc
    • Linsker, R. 1986. From basic network principle to neural architecture (series). Proc. Natl. Acad. Sci. USA 83, 7508-7512, 8390-8394, 8779-8783.
    • (1986) Natl. Acad. Sci. USA , vol.83 , pp. 7508-7512
    • Linsker, R.1
  • 15
    • 33747719454 scopus 로고
    • Dynamics of iterated map networks
    • Marcus, C. M., and Westervelt, R. M. 1989. Dynamics of iterated map networks. Phys. Rev. A 40, 501-504.
    • (1989) Phys. Rev. A , vol.40 , pp. 501-504
    • Marcus, C.M.1    Westervelt, R.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.