-
1
-
-
0022079443
-
Polynomial decomposition algorithms
-
Barton, D., Zippel, R. (1985). Polynomial decomposition algorithms. J. Symb. Comput. 1, 159-168.
-
(1985)
J. Symb. Comput.
, vol.1
, pp. 159-168
-
-
Barton, D.1
Zippel, R.2
-
3
-
-
0030395913
-
Fast computations in the lattice of polynomial rational function fields
-
New York: ACM Press
-
Binder, F. (1996). Fast computations in the lattice of polynomial rational function fields. In ISSAC-96, pp. 43-48. New York: ACM Press.
-
(1996)
ISSAC-96
, pp. 43-48
-
-
Binder, F.1
-
5
-
-
0002803133
-
Groebner bases: An algorithmic method in polynomial ideal theory
-
Bose, N.K. ed., Chapter 6. Dordrecht: D. Riedel
-
Buchberger, B. (1985). Groebner bases: an algorithmic method in polynomial ideal theory. In Bose, N.K. ed., Recent Trends in Multidimensional Systems Theory, Chapter 6. Dordrecht: D. Riedel.
-
(1985)
Recent Trends in Multidimensional Systems Theory
-
-
Buchberger, B.1
-
6
-
-
84966238101
-
A chain rule for multivariate resultants
-
Cheng, C., McKay, J. H., Wang, S. (1995). A chain rule for multivariate resultants. Proc. Amer. Math. Soc. 123, 1037-1047.
-
(1995)
Proc. Amer. Math. Soc.
, vol.123
, pp. 1037-1047
-
-
Cheng, C.1
McKay, J.H.2
Wang, S.3
-
7
-
-
0003908675
-
-
New York: Springer
-
Cox, D., Little, J., ÓShea, D. (1992). Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics. New York: Springer.
-
(1992)
Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics
-
-
Cox, D.1
Little, J.2
Óshea, D.3
-
8
-
-
0003893940
-
-
Technical Report 95-56, Research Institute for Symbolic Computation, Johannes Kepler University A-4040 Linz, Austria. Submitted for publication
-
Hong, H. (1995). Multivariate resultants under composition. Technical Report 95-56, Research Institute for Symbolic Computation, Johannes Kepler University A-4040 Linz, Austria. Submitted for publication.
-
(1995)
Multivariate Resultants under Composition
-
-
Hong, H.1
-
10
-
-
0031123228
-
Subresultant under composition
-
Hong, H. (1997). Subresultant under composition. J. Symb. Comput. 23, 355-365.
-
(1997)
J. Symb. Comput.
, vol.23
, pp. 355-365
-
-
Hong, H.1
-
11
-
-
0000655259
-
Polynomial decomposition algorithms
-
Kozen, D., Landau, S. (1989). Polynomial decomposition algorithms. J. Symb. Comput. 7, 445-456.
-
(1989)
J. Symb. Comput.
, vol.7
, pp. 445-456
-
-
Kozen, D.1
Landau, S.2
-
12
-
-
0000200187
-
A chain rule for the resultant of two polynomials
-
McKay, J., Wang, S. (1989). A chain rule for the resultant of two polynomials. Arch. Math. 53, 347-351.
-
(1989)
Arch. Math.
, vol.53
, pp. 347-351
-
-
McKay, J.1
Wang, S.2
-
14
-
-
0000178769
-
On the theory of graded structures
-
Robbiano, L. (1986). On the theory of graded structures. J. Symb. Comput. 2, 139-170.
-
(1986)
J. Symb. Comput.
, vol.2
, pp. 139-170
-
-
Robbiano, L.1
-
15
-
-
85025512580
-
Functional decomposition of polynomials: The tame case
-
Von zur Gathen, J. (1990a). Functional decomposition of polynomials: the tame case. J. Symb. Comput. 9, 281-300.
-
(1990)
J. Symb. Comput.
, vol.9
, pp. 281-300
-
-
Von Zur Gathen, J.1
-
16
-
-
84974611723
-
Functional decomposition of polynomials: The wild case
-
Von zur Gathen, J. (1990b). Functional decomposition of polynomials: the wild case. J. Symb. Comput. 10, 437-452.
-
(1990)
J. Symb. Comput.
, vol.10
, pp. 437-452
-
-
Von Zur Gathen, J.1
-
17
-
-
0002685743
-
Admissible orderings and linear forms
-
Weispfenning, V. (1987). Admissible orderings and linear forms. SIGSAM Bulletin 21, 16-18.
-
(1987)
SIGSAM Bulletin
, vol.21
, pp. 16-18
-
-
Weispfenning, V.1
|