-
1
-
-
0022079443
-
Polynomial decomposition algorithms
-
Barton, D., Zippel, R. (1985). Polynomial decomposition algorithms. J. Symbolic Computation, 1(2): 159-168.
-
(1985)
J. Symbolic Computation
, vol.1
, Issue.2
, pp. 159-168
-
-
Barton, D.1
Zippel, R.2
-
2
-
-
0030395913
-
Fast computations in the lattice of polynomial rational function fields
-
ACM Press
-
Binder, F. (1996). Fast Computations in the lattice of polynomial rational function fields. In Proc. ISSAC-96, pp. 43-48. ACM Press.
-
(1996)
Proc. ISSAC-96
, pp. 43-48
-
-
Binder, F.1
-
3
-
-
0015141743
-
On Euclid's algorithm and the theory of subresultants
-
Brown, W.S., Traub, J.F. (1971). On Euclid's algorithm and the theory of subresultants. Journal ACM, 18(4):505-514.
-
(1971)
Journal ACM
, vol.18
, Issue.4
, pp. 505-514
-
-
Brown, W.S.1
Traub, J.F.2
-
4
-
-
84945709818
-
Subresultants and reduced polynomial remainder sequences
-
Collins, G.E. (1967). Subresultants and reduced polynomial remainder sequences. Journal ACM, 14: 128-142.
-
(1967)
Journal ACM
, vol.14
, pp. 128-142
-
-
Collins, G.E.1
-
5
-
-
0003893940
-
-
Technical Report 95-56, Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria. Submitted for publication
-
Hong, H. (1995). Multivariate Resultants Under Composition. Technical Report 95-56, Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria. Submitted for publication.
-
(1995)
Multivariate Resultants Under Composition
-
-
Hong, H.1
-
6
-
-
0010957742
-
Groebner basis under composition I
-
In press
-
Hong, H. (1997). Groebner basis under composition I. J. Symbolic Computation. In press.
-
(1997)
J. Symbolic Computation
-
-
Hong, H.1
-
7
-
-
0000655259
-
Polynomial decomposition algorithms
-
Kozen, D., Landau, S. (1989). Polynomial decomposition algorithms. J. Symbolic Computation, 7(5): 445-456.
-
(1989)
J. Symbolic Computation
, vol.7
, Issue.5
, pp. 445-456
-
-
Kozen, D.1
Landau, S.2
-
8
-
-
0003062680
-
Generalized polynomial remainder sequences
-
In Buchberger, B., Collins, G.E., Loos, R.G.K., (eds). Springer-Verlag, Wien-New York
-
Loos, R.G.K. (1982). Generalized polynomial remainder sequences. In Buchberger, B., Collins, G.E., Loos, R.G.K., (eds), Computer Algebra, Symbolic and Algebraic Computation, pp. 115-137. Springer-Verlag, Wien-New York.
-
(1982)
Computer Algebra, Symbolic and Algebraic Computation
, pp. 115-137
-
-
Loos, R.G.K.1
-
9
-
-
0000200187
-
A chain rule for the resultant of two polynomials
-
McKay, J., Wang, S. (1989). A chain rule for the resultant of two polynomials. Arch. Math., 53:347-351.
-
(1989)
Arch. Math.
, vol.53
, pp. 347-351
-
-
McKay, J.1
Wang, S.2
-
11
-
-
85025512580
-
Functional decomposition of polynomials: The tame case
-
von zur Gathen, J. (1990a). Functional decomposition of polynomials: the tame case. J. Symbolic Computation, 9(3):281-300.
-
(1990)
J. Symbolic Computation
, vol.9
, Issue.3
, pp. 281-300
-
-
Von Zur Gathen, J.1
-
12
-
-
84974611723
-
Functional decomposition of polynomials: The wild case
-
von zur Gathen, J. (1990b). Functional decomposition of polynomials: the wild case. J. Symbolic Computation, 10(5):437-452.
-
(1990)
J. Symbolic Computation
, vol.10
, Issue.5
, pp. 437-452
-
-
Von Zur Gathen, J.1
|