메뉴 건너뛰기




Volumn 56, Issue 2, 1998, Pages 223-252

Covering Cubes by Random Half Cubes, with Applications to Binary Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; STATISTICAL MECHANICS; VECTORS;

EID: 0032047151     PISSN: 00220000     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcss.1997.1560     Document Type: Article
Times cited : (43)

References (38)
  • 2
    • 84956222194 scopus 로고
    • Storage capacity of a multilayer neural network with binary weights
    • E. Barkai and I. Kanter, Storage capacity of a multilayer neural network with binary weights, Europhys. Lett. 14 (1991), 107-112.
    • (1991) Europhys. Lett. , vol.14 , pp. 107-112
    • Barkai, E.1    Kanter, I.2
  • 4
    • 0004256573 scopus 로고
    • Addison-Wesley, Reading, MA
    • L. Breiman, "Probability," Addison-Wesley, Reading, MA, 1968.
    • (1968) Probability
    • Breiman, L.1
  • 5
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • T. M. Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Trans. Electronic Comput. 14 (1965), 326-331.
    • (1965) IEEE Trans. Electronic Comput. , vol.14 , pp. 326-331
    • Cover, T.M.1
  • 6
    • 0027879713 scopus 로고
    • On the average tractability of binary integer programming and the curious transition to perfect generalization in learning majority functions
    • Morgan Kaufman, San Mateo, CA
    • S. Fang and S. Venkatesh, On the average tractability of binary integer programming and the curious transition to perfect generalization in learning majority functions, in "Proceedings of the 6th Workshop on Computational Learning Theory," Morgan Kaufman, San Mateo, CA, 1993.
    • (1993) Proceedings of the 6th Workshop on Computational Learning Theory
    • Fang, S.1    Venkatesh, S.2
  • 8
    • 0030125804 scopus 로고    scopus 로고
    • Learning binary perceptrons perfectly efficiently
    • S. Fang and S. Venkatesh, Learning binary perceptrons perfectly efficiently, J. Comput. System Sci. 52 (1996), 374-389.
    • (1996) J. Comput. System Sci. , vol.52 , pp. 374-389
    • Fang, S.1    Venkatesh, S.2
  • 9
    • 0040415806 scopus 로고
    • Random polytopes in the d-dimensional cube
    • Z. Füredi, Random polytopes in the d-dimensional cube, Discrete Comput. Geom. 1 (1986), 315-319.
    • (1986) Discrete Comput. Geom. , vol.1 , pp. 315-319
    • Füredi, Z.1
  • 10
    • 84913828571 scopus 로고
    • Maximum storage capacity in neural networks
    • E. Gardner, Maximum storage capacity in neural networks, Europhys. Lett. 4 (1987), 481-485.
    • (1987) Europhys. Lett. , vol.4 , pp. 481-485
    • Gardner, E.1
  • 11
    • 36149029786 scopus 로고
    • The space of interactions in neural network models
    • E. Gardner, The space of interactions in neural network models, J. Phys. A 21 (1988), 257-270.
    • (1988) J. Phys. A , vol.21 , pp. 257-270
    • Gardner, E.1
  • 12
    • 0002631885 scopus 로고
    • Optimal storage properties of neural network models
    • E. Gardner and B. Derrida, Optimal storage properties of neural network models, J. Phys. A 21 (1988), 271-284.
    • (1988) J. Phys. A , vol.21 , pp. 271-284
    • Gardner, E.1    Derrida, B.2
  • 13
    • 0027866037 scopus 로고
    • Average case analysis of the clipped Hebb rule for nonoverlapping perceptron networks
    • Morgan Kaufman, San Mateo, CA
    • M. Golea and M. Marchand, Average case analysis of the clipped Hebb rule for nonoverlapping perceptron networks, in "Proceedings of the 6th Workshop on Computational Learning Theory," pp. 151-157, Morgan Kaufman, San Mateo, CA, 1993.
    • (1993) Proceedings of the 6th Workshop on Computational Learning Theory , pp. 151-157
    • Golea, M.1    Marchand, M.2
  • 14
    • 0001150959 scopus 로고
    • First-order transition to perfect generalization in a neural network with binary synapses
    • G. Gyorgyi, First-order transition to perfect generalization in a neural network with binary synapses, Phys. Rev. A 41 (1990), 7097-7100.
    • (1990) Phys. Rev. A , vol.41 , pp. 7097-7100
    • Gyorgyi, G.1
  • 18
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), 2554-2558.
    • (1982) Proc. Nat. Acad. Sci. U.S.A. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 20
    • 4243377862 scopus 로고
    • Learning algorithm for a neural network with binary synapses
    • H. Köhler, S. Diederich, W. Kinzel, and M. Opper, Learning algorithm for a neural network with binary synapses, J. Phys. B 78 (1990), 333-342.
    • (1990) J. Phys. B , vol.78 , pp. 333-342
    • Köhler, H.1    Diederich, S.2    Kinzel, W.3    Opper, M.4
  • 23
    • 0004108913 scopus 로고
    • On the determinant of (0, 1) matrices
    • J. Komlós, On the determinant of (0, 1) matrices, Studia Sci. Math. Hung. 2 (1967), 7-21.
    • (1967) Studia Sci. Math. Hung. , vol.2 , pp. 7-21
    • Komlós, J.1
  • 24
    • 0023829082 scopus 로고
    • Convergence results in an associative memory model
    • J. Komlós and R. Paturi, Convergence results in an associative memory model, Neural Networks 1 (1988), 239-250.
    • (1988) Neural Networks , vol.1 , pp. 239-250
    • Komlós, J.1    Paturi, R.2
  • 25
    • 0001000745 scopus 로고
    • Storage capacity of memory networks with binary couplings
    • W. Krauth and M. Mézard, Storage capacity of memory networks with binary couplings, J. Physique 50 (1989), 3057-3066.
    • (1989) J. Physique , vol.50 , pp. 3057-3066
    • Krauth, W.1    Mézard, M.2
  • 26
    • 0012246638 scopus 로고
    • Critical storage capacity of the j = ± 1 neural network
    • W. Krauth and M. Opper, Critical storage capacity of the j = ± 1 neural network, J. Phys. A: Math. Gen. 22 (1989), L519-L523.
    • (1989) J. Phys. A: Math. Gen. , vol.22
    • Krauth, W.1    Opper, M.2
  • 28
    • 0015951617 scopus 로고
    • The existence of persistent states in the brain
    • W. A. Little, The existence of persistent states in the brain, Math. Biosci. 19 (1974), 101-119.
    • (1974) Math. Biosci. , vol.19 , pp. 101-119
    • Little, W.A.1
  • 29
    • 0017976731 scopus 로고
    • Analytic study of the memory storage capacity of a neural network
    • W. A. Little and G. L. Shaw, Analytic study of the memory storage capacity of a neural network, Math. Biosci. 39 (1978), 281-290.
    • (1978) Math. Biosci. , vol.39 , pp. 281-290
    • Little, W.A.1    Shaw, G.L.2
  • 30
    • 21144472166 scopus 로고
    • Generalization properties of multilayered neural networks
    • G. Mato and N. Parga, Generalization properties of multilayered neural networks, J. Phys. A: Math. Gen. 25 (1992), 5047-5054.
    • (1992) J. Phys. A: Math. Gen. , vol.25 , pp. 5047-5054
    • Mato, G.1    Parga, N.2
  • 31
    • 51249194645 scopus 로고
    • A logical calculus for ideas immanent in nervous activity
    • W. S. McCulloch and W. H. Pitts, A logical calculus for ideas immanent in nervous activity, Bull. Math. Biophys. 5 (1943), 115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.H.2
  • 33
    • 0000755030 scopus 로고
    • Statistical mechanics of learning from examples
    • H. S. Seung, H. Sompolinsky, and N. Tishby, Statistical mechanics of learning from examples, Phys. Rev. A 45 (1992), 6056-6091.
    • (1992) Phys. Rev. A , vol.45 , pp. 6056-6091
    • Seung, H.S.1    Sompolinsky, H.2    Tishby, N.3
  • 34
    • 0040415809 scopus 로고
    • Computation and learning in the context of neural network capacity
    • H. Wechsler, Ed., Academic Press, New York
    • S. Venkatesh, Computation and learning in the context of neural network capacity, in "Neural Networks for Perception" (H. Wechsler, Ed.), Academic Press, New York, 1991.
    • (1991) Neural Networks for Perception
    • Venkatesh, S.1
  • 36
    • 0026853171 scopus 로고
    • The science of making ERORS: What error tolerance implies for capacity in neural networks
    • S. Venkatesh, The science of making ERORS: What error tolerance implies for capacity in neural networks, IEEE Trans. Knowledge and Data Eng. 4 (1992), 135-144.
    • (1992) IEEE Trans. Knowledge and Data Eng. , vol.4 , pp. 135-144
    • Venkatesh, S.1
  • 37
    • 0000623082 scopus 로고
    • A problem in geometric probability
    • J. Wendel, A problem in geometric probability, Math. Scand. 11 (1962), 109-111.
    • (1962) Math. Scand. , vol.11 , pp. 109-111
    • Wendel, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.