메뉴 건너뛰기




Volumn 12, Issue 1, 1998, Pages 83-109

The capacity of majority rule

Author keywords

Binary integer programming; Capacity; Majority rule; Neuron; Perceptron; Random polytopes; Threshold function

Indexed keywords


EID: 0032327797     PISSN: 10429832     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1098-2418(199801)12:1<83::AID-RSA5>3.0.CO;2-P     Document Type: Article
Times cited : (3)

References (12)
  • 1
    • 0027879713 scopus 로고
    • On the average tractability of binary integer programming and the curious transition to perfect generalizaton in learning majority functions
    • Morgan Kaufmann, San Mateo, CA
    • S. C. Fang and S. S. Venkatesh, On the average tractability of binary integer programming and the curious transition to perfect generalizaton in learning majority functions, Proceedings of the Sixth ACM Conference on Computational Learning Theory, Morgan Kaufmann, San Mateo, CA, 1993, pp. 310-316.
    • (1993) Proceedings of the Sixth ACM Conference on Computational Learning Theory , pp. 310-316
    • Fang, S.C.1    Venkatesh, S.S.2
  • 2
    • 0030125804 scopus 로고    scopus 로고
    • Learning binary perceptrons perfectly efficiently
    • S. C. Fang and S. S. Venkatesh, Learning binary perceptrons perfectly efficiently, J. Comput. System Sci., 52, 374-389 (1996).
    • (1996) J. Comput. System Sci. , vol.52 , pp. 374-389
    • Fang, S.C.1    Venkatesh, S.S.2
  • 4
    • 0040415806 scopus 로고
    • Random polytopes in the d-dimensional cube
    • Z. Füredi, Random polytopes in the d-dimensional cube, Discrete Comput. Geom., 1, 315-319 (1986).
    • (1986) Discrete Comput. Geom. , vol.1 , pp. 315-319
    • Füredi, Z.1
  • 6
    • 51249181779 scopus 로고
    • A new polynomial-time algorithm for linear programming
    • N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4, 373-395 (1984).
    • (1984) Combinatorica , vol.4 , pp. 373-395
    • Karmarkar, N.1
  • 7
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples
    • L. Pitt and L. G. Valiant, Computational limitations on learning from examples, J. Assoc. Comput. Mach., 35, 965-984 (1988).
    • (1988) J. Assoc. Comput. Mach. , vol.35 , pp. 965-984
    • Pitt, L.1    Valiant, L.G.2
  • 8
    • 0040415810 scopus 로고
    • Multidimensional local limit theorems for large deviations
    • W. Richter, Multidimensional local limit theorems for large deviations, Theory Probab. Appl., 3, 100-106 (1958).
    • (1958) Theory Probab. Appl. , vol.3 , pp. 100-106
    • Richter, W.1
  • 9
    • 0039823308 scopus 로고
    • An asymptotic expansion for a class of multivariate normal integrals
    • H. Ruben, An asymptotic expansion for a class of multivariate normal integrals, J. Austral. Math. Soc., 2, 253-264 (1962).
    • (1962) J. Austral. Math. Soc. , vol.2 , pp. 253-264
    • Ruben, H.1
  • 11
    • 0040415809 scopus 로고
    • Computation and learning in the context of neural network capacity
    • H. Wechsler, Ed., Academic Press, New York
    • S. S. Venkatesh, Computation and learning in the context of neural network capacity, in Neural Networks for Perception, H. Wechsler, Ed., Academic Press, New York, 1991.
    • (1991) Neural Networks for Perception
    • Venkatesh, S.S.1
  • 12
    • 0006805388 scopus 로고
    • Directed drift: A new linear threshold algorithm for learning binary weights on-line
    • S. S. Venkatesh, Directed drift: a new linear threshold algorithm for learning binary weights on-line, J. Comput. System Sci., 46, 198-217 (1993).
    • (1993) J. Comput. System Sci. , vol.46 , pp. 198-217
    • Venkatesh, S.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.