메뉴 건너뛰기




Volumn 150, Issue 3, 1998, Pages 963-976

Novel mutations in the RAD3 and SSL1 genes perturb genome stability by stimulating recombination between short repeats in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

CHECKPOINT KINASE RAD3; HELICASE; REPETITIVE DNA; SSL1 PROTEIN; UNCLASSIFIED DRUG; ZINC FINGER PROTEIN;

EID: 0031737863     PISSN: 00166731     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (26)

References (65)
  • 1
    • 0029996486 scopus 로고    scopus 로고
    • Nucleotide excision repair gene function in short-sequence recombination
    • BAILIS, A. M., and S. MAINES, 1996 Nucleotide excision repair gene function in short-sequence recombination. J. Bacteriol. 173: 2136-2140.
    • (1996) J. Bacteriol. , vol.173 , pp. 2136-2140
    • Bailis, A.M.1    Maines, S.2
  • 2
    • 0025175785 scopus 로고
    • A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process
    • BAILIS, A. M., and R. ROTHSTEIN, 1990 A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process. Genetics 126: 535-547.
    • (1990) Genetics , vol.126 , pp. 535-547
    • Bailis, A.M.1    Rothstein, R.2
  • 3
    • 0026644237 scopus 로고
    • Genome rearrangement in a top3 mutant of Saccharomyces cerevisiae requires a functional RAD1 excision repair gene
    • BAILIS, A. M., L. ARTHUR and R. ROTHSTEIN, 1992 Genome rearrangement in a top3 mutant of Saccharomyces cerevisiae requires a functional RAD1 excision repair gene. Mol. Cell. Biol. 12: 4988-4993.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 4988-4993
    • Bailis, A.M.1    Arthur, L.2    Rothstein, R.3
  • 4
    • 0029058024 scopus 로고
    • The essential helicase gene RAD3 suppresses short-sequence recombination in Saccharomyces cerevisae
    • BAILIS, A. M., S. MAINES and M. C. NEGRITTO, 1995 The essential helicase gene RAD3 suppresses short-sequence recombination in Saccharomyces cerevisae. Mol. Cell. Biol. 15: 3998-4008.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 3998-4008
    • Bailis, A.M.1    Maines, S.2    Negritto, M.C.3
  • 5
    • 0028331924 scopus 로고
    • Yeast RAD3 protein binds directly to both SSL2 and SSL1 proteins: Implications for the structure and function of transcription/repair factor b
    • BARDWELL, L., A. J. BARDWELL, W. J. FEAVER, J. Q. SVEJSTRUP, R. D. KORNBERG et al., 1994 Yeast RAD3 protein binds directly to both SSL2 and SSL1 proteins: implications for the structure and function of transcription/repair factor b. Proc. Natl. Acad. Sci. USA 91: 3926-3930.
    • (1994) Proc. Natl. Acad. Sci. USA , vol.91 , pp. 3926-3930
    • Bardwell, L.1    Bardwell, A.J.2    Feaver, W.J.3    Svejstrup, J.Q.4    Kornberg, R.D.5
  • 6
    • 0014407722 scopus 로고
    • Repeated sequences in DNA
    • BRITTEN, R. J., and D. E. KOHNE, 1968 Repeated sequences in DNA. Science 161: 529-540.
    • (1968) Science , vol.161 , pp. 529-540
    • Britten, R.J.1    Kohne, D.E.2
  • 8
    • 0000642942 scopus 로고
    • Some methods for strengthening the common chi-square tests
    • COCHRAN, W. G., 1954 Some methods for strengthening the common chi-square tests. Biometrics 10: 417-427.
    • (1954) Biometrics , vol.10 , pp. 417-427
    • Cochran, W.G.1
  • 9
    • 0030051527 scopus 로고    scopus 로고
    • Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae
    • DATTA, A., A. ADJIRI, L. NEW, G. F. CROUSE and S. JINKS-ROBERTSON, 1996 Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 1085-1093.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 1085-1093
    • Datta, A.1    Adjiri, A.2    New, L.3    Crouse, G.F.4    Jinks-Robertson, S.5
  • 10
    • 0029101616 scopus 로고
    • Inactivation of the mouse MSH2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer
    • DE WIND, N., M. DEKKER, A. BERNS, M. RADMAN and H. TERIEL, 1995 Inactivation of the mouse MSH2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321-330.
    • (1995) Cell , vol.82 , pp. 321-330
    • De Wind, N.1    Dekker, M.2    Berns, A.3    Radman, M.4    Teriel, H.5
  • 11
    • 0021739363 scopus 로고
    • The major promoter element of rDNA lies 2-kb upstream
    • ELION, E., and J. R. WARNER, 1984 The major promoter element of rDNA lies 2-kb upstream. Cell 39: 663-673.
    • (1984) Cell , vol.39 , pp. 663-673
    • Elion, E.1    Warner, J.R.2
  • 12
    • 0027760994 scopus 로고
    • Dual roles of a multiprotein complex from Saccharomyces cerevisiae in transcription and DNA repair
    • FEAVER, W. J., J. Q. SVEJSTRUP, L. BARDWELL, A. J. BARDWELL, A. BURATOWSKI et al., 1993 Dual roles of a multiprotein complex from Saccharomyces cerevisiae in transcription and DNA repair. Cell 75: 1379-1387.
    • (1993) Cell , vol.75 , pp. 1379-1387
    • Feaver, W.J.1    Svejstrup, J.Q.2    Bardwell, L.3    Bardwell, A.J.4    Buratowski, A.5
  • 13
    • 0022504635 scopus 로고
    • Hyper-recombining recipient strains bacterial conjugation
    • FEINSTEIN, S. I., and K. B. LOW, 1986 Hyper-recombining recipient strains bacterial conjugation. Genetics 113: 13-33.
    • (1986) Genetics , vol.113 , pp. 13-33
    • Feinstein, S.I.1    Low, K.B.2
  • 14
    • 0024406857 scopus 로고
    • A novel genetic system to detect protein-protein interactions
    • FIELDS, S., and O. K. SONG, 1989 A novel genetic system to detect protein-protein interactions. Nature 340: 1046-1051.
    • (1989) Nature , vol.340 , pp. 1046-1051
    • Fields, S.1    Song, O.K.2
  • 15
    • 0026658135 scopus 로고
    • Cloning of the 62-kilodalton component of basic transcription factor BTF2
    • FISCHER, L., M. GERARD, C. CHALUT, Y. LUTZ, S. HUMBERT et al., 1992 Cloning of the 62-kilodalton component of basic transcription factor BTF2. Science 257: 1392-1395.
    • (1992) Science , vol.257 , pp. 1392-1395
    • Fischer, L.1    Gerard, M.2    Chalut, C.3    Lutz, Y.4    Humbert, S.5
  • 17
    • 0025787782 scopus 로고
    • Purification and interaction properties of the human RNA polymerase B(II) general trancription factor BTF2
    • GERARD, M., L. FISCHER, V. MONCOLLIN, J. M. CHIPOULET, P. CHAMBON et al., 1991 Purification and interaction properties of the human RNA polymerase B(II) general trancription factor BTF2. J. Biol. Chem. 266: 20940-20945.
    • (1991) J. Biol. Chem. , vol.266 , pp. 20940-20945
    • Gerard, M.1    Fischer, L.2    Moncollin, V.3    Chipoulet, J.M.4    Chambon, P.5
  • 18
    • 0026664855 scopus 로고
    • Cloning of a subunit of yeast RNA polymerase II transcription factor b and CTD kinase
    • GILEADI, O., W. J. FEAVER and R. D. KORNBERG, 1992 Cloning of a subunit of yeast RNA polymerase II transcription factor b and CTD kinase. Science 257: 1389-1392.
    • (1992) Science , vol.257 , pp. 1389-1392
    • Gileadi, O.1    Feaver, W.J.2    Kornberg, R.D.3
  • 19
    • 0024344173 scopus 로고
    • Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes
    • GORBALENYA, A. E., E. V. KOONIN, A. P. DONCHENKO and V. M. BLINOV, 1989 Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17: 4713-4730.
    • (1989) Nucleic Acids Res. , vol.17 , pp. 4713-4730
    • Gorbalenya, A.E.1    Koonin, E.V.2    Donchenko, A.P.3    Blinov, V.M.4
  • 20
    • 0028437683 scopus 로고
    • Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia
    • GU, Y., H. ALDER, T. NAKAMURA, S. A. SCHICHMAN, R. PRASAD et al., 1994 Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia. Cancer Res. 54: 2327-2330.
    • (1994) Cancer Res. , vol.54 , pp. 2327-2330
    • Gu, Y.1    Alder, H.2    Nakamura, T.3    Schichman, S.A.4    Prasad, R.5
  • 21
    • 0028140494 scopus 로고
    • DNA repair gene RAD3 of Saccharomyces cerevisiae is essential for transcription by RNA polymerase II
    • GUZDER, S. N., H. QIU, C. H. SOMMERS, P. SUNG, L. PRAKASH et al., 1994 DNA repair gene RAD3 of Saccharomyces cerevisiae is essential for transcription by RNA polymerase II. Nature 367: 91-94.
    • (1994) Nature , vol.367 , pp. 91-94
    • Guzder, S.N.1    Qiu, H.2    Sommers, C.H.3    Sung, P.4    Prakash, L.5
  • 23
    • 0027221911 scopus 로고
    • Nucleotide-excision repair II: From yeast to mammals
    • HOEJIMAKERS, J. H. J., 1993 Nucleotide-excision repair II: from yeast to mammals. Trends Genet. 9: 211-217.
    • (1993) Trends Genet. , vol.9 , pp. 211-217
    • Hoejimakers, J.H.J.1
  • 24
    • 0023481280 scopus 로고
    • A ten-minute DNA preparation efficiently releases autonomous plasmids for transformation of Escherichia coli
    • HOFFMAN, C. S., and F. WINSTON, 1987 A ten-minute DNA preparation efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 94: 267-272.
    • (1987) Gene , vol.94 , pp. 267-272
    • Hoffman, C.S.1    Winston, F.2
  • 25
    • 0028180697 scopus 로고
    • p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a protein involved in DNA repair
    • HUMBERT, S., H. VAN VUUREN, Y. LUTZ, J. H. J. HOEJIMAKERS, J. M. EGLY et al., 1994 p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a protein involved in DNA repair. EMBO J. 13: 2393-2398.
    • (1994) EMBO J. , vol.13 , pp. 2393-2398
    • Humbert, S.1    Van Vuuren, H.2    Lutz, Y.3    Hoejimakers, J.H.J.4    Egly, J.M.5
  • 26
    • 0020529962 scopus 로고
    • Transformation of intact yeast cells treated with alkali cations
    • ITO, H., Y. FUKODA, K. MURATA and A. KIMIERA, 1983 Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 63-168.
    • (1983) J. Bacteriol. , vol.153 , pp. 63-168
    • Ito, H.1    Fukoda, Y.2    Murata, K.3    Kimiera, A.4
  • 27
    • 0027231111 scopus 로고
    • Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae
    • JINKS-ROBERTSON, S., M. MICHELITCH and S. RAMCHARAN, 1993 Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 3937-3950.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 3937-3950
    • Jinks-Robertson, S.1    Michelitch, M.2    Ramcharan, S.3
  • 28
    • 0029240276 scopus 로고
    • Genetic control of intrachromosomal recombination
    • KLEIN, H. L., 1995 Genetic control of intrachromosomal recombination. BioEssays 17: 147-159.
    • (1995) BioEssays , vol.17 , pp. 147-159
    • Klein, H.L.1
  • 29
    • 0031953262 scopus 로고    scopus 로고
    • Posttranslational inhibition of Ty1 retrotranspostion by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p
    • LEE, B.-S., C. P. LICHTENSTEIN, B. FAIOIA, L. A. RINCKEL, W. WYSOCK et al., 1998 Posttranslational inhibition of Ty1 retrotranspostion by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. Genetics 148: 1743-1761.
    • (1998) Genetics , vol.148 , pp. 1743-1761
    • Lee, B.-S.1    Lichtenstein, C.P.2    Faioia, B.3    Rinckel, L.A.4    Wysock, W.5
  • 30
    • 0030981645 scopus 로고    scopus 로고
    • Gene targeting by linear duplex DNA fragments occurs by assimilation of a single strand that is subject to preferential mismatch correction
    • LEUNG, W. Y., A. MALKOVA and J. E. HABER, 1997 Gene targeting by linear duplex DNA fragments occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94: 6851-6856.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 6851-6856
    • Leung, W.Y.1    Malkova, A.2    Haber, J.E.3
  • 32
    • 0029120399 scopus 로고
    • Micro-homology mediated PCR targeting in Saccharomyces cerevisiae
    • MANIVASKAM, P., S. C. WEBER, J. MCELVER and R. H. SCHIESTL, 1995 Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res. 23: 2799-2800.
    • (1995) Nucleic Acids Res. , vol.23 , pp. 2799-2800
    • Manivaskam, P.1    Weber, S.C.2    Mcelver, J.3    Schiestl, R.H.4
  • 33
    • 0028925910 scopus 로고
    • An interaction between the Tfb1 and Ssl1 subunits of yeast TFIIH correlates with DNA repair activity
    • MATSUI, P., J. DEPAULO and S. BURATOWSKI, 1995 An interaction between the Tfb1 and Ssl1 subunits of yeast TFIIH correlates with DNA repair activity. Nucleic Acids Res. 23: 767-772.
    • (1995) Nucleic Acids Res. , vol.23 , pp. 767-772
    • Matsui, P.1    Depaulo, J.2    Buratowski, S.3
  • 34
    • 0003785155 scopus 로고
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • MILLER, J. H., 1972 Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (1972) Experiments in Molecular Genetics
    • Miller, J.H.1
  • 35
    • 0024025259 scopus 로고
    • Spontaneous mitotic recombination in yeast: The hyper-recombinational rem1 mutations are alleles of the RAD3 gene
    • MONTELONE, B. A., M. E. HOEKSTRA and R. E. MALONE, 1988 Spontaneous mitotic recombination in yeast: the hyper-recombinational rem1 mutations are alleles of the RAD3 gene. Genetics 119: 289-301.
    • (1988) Genetics , vol.119 , pp. 289-301
    • Montelone, B.A.1    Hoekstra, M.E.2    Malone, R.E.3
  • 36
    • 0022636003 scopus 로고
    • Analysis of the essential and excision repair functions of the RAD3 gene of Saccharomyces cerevisiae by mutagenesis
    • NAUMOVSKI, L., and E. C. FRIEDBERG, 1986 Analysis of the essential and excision repair functions of the RAD3 gene of Saccharomyces cerevisiae by mutagenesis. Mol. Cell. Biol. 6: 1218-1227.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 1218-1227
    • Naumovski, L.1    Friedberg, E.C.2
  • 37
    • 0031036296 scopus 로고    scopus 로고
    • Influence of DNA sequence identity on efficiency of targeted gene replacement
    • NEGRITTO, M. T., X. WU, T. KUO, S. CHU and A. M. BAILIS, 1997 Influence of DNA sequence identity on efficiency of targeted gene replacement. Mol. Cell. Biol. 17: 278-286.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 278-286
    • Negritto, M.T.1    Wu, X.2    Kuo, T.3    Chu, S.4    Bailis, A.M.5
  • 38
    • 0009356799 scopus 로고
    • A 24-base pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast
    • NICKOLOFF, J., E. Y. CHEN and F. HEFFRON, 1986 A 24-base pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc. Natl. Acad. Sci. USA 83: 7831-7835.
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 7831-7835
    • Nickoloff, J.1    Chen, E.Y.2    Heffron, F.3
  • 39
    • 0024262193 scopus 로고
    • Recombination between repeated sequences in microorganisms
    • PETES, T. D., and C. W. HILL, 1988 Recombination between repeated sequences in microorganisms. Annu. Rev. Genet. 22: 147-168.
    • (1988) Annu. Rev. Genet. , vol.22 , pp. 147-168
    • Petes, T.D.1    Hill, C.W.2
  • 40
    • 0025949333 scopus 로고
    • Control of large chromosomal duplications in Escherichia coli by the mismatch repair system
    • PETIT, M.-A., J. DIMPFL, M. RADMAN and H. ECHOLS, 1991 Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. Genetics 129: 327-332.
    • (1991) Genetics , vol.129 , pp. 327-332
    • Petit, M.-A.1    Dimpfl, J.2    Radman, M.3    Echols, H.4
  • 41
    • 0000201467 scopus 로고
    • Mismatch repair and genetic recombination
    • edited by R. KUCHERLAPATI and G. SMITH. American Society for Microbiology, Washington, DC
    • RADMAN, M., 1988 Mismatch repair and genetic recombination, pp. 169-192 in Genetic recombination, edited by R. KUCHERLAPATI and G. SMITH. American Society for Microbiology, Washington, DC.
    • (1988) Genetic Recombination , pp. 169-192
    • Radman, M.1
  • 42
    • 0024469392 scopus 로고
    • The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants
    • RAYSSIGUIER, C., D. S. THALER and M. RADMAN, 1989 The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396-401.
    • (1989) Nature , vol.342 , pp. 396-401
    • Rayssiguier, C.1    Thaler, D.S.2    Radman, M.3
  • 43
    • 0019506656 scopus 로고
    • Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: Incision of ultraviolet irradiated deoxyribonucleic acid in vivo
    • REYNOLDS, R. J., and E. C. FRIEDBERG, 1981 Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: incision of ultraviolet irradiated deoxyribonucleic acid in vivo. J. Bacteriol. 146: 692-704.
    • (1981) J. Bacteriol. , vol.146 , pp. 692-704
    • Reynolds, R.J.1    Friedberg, E.C.2
  • 44
    • 0018392805 scopus 로고
    • Deletions of a tyrosine tRNA gene in S. cerevisae
    • ROTHSTEIN, R., 1979 Deletions of a tyrosine tRNA gene in S. cerevisae. Cell 17: 185-190.
    • (1979) Cell , vol.17 , pp. 185-190
    • Rothstein, R.1
  • 45
    • 0025979877 scopus 로고
    • Targeting, disruption, replacement, and allele rescue: Integrative DNA transformation in yeast
    • ROTHSTEIN, R., 1991 Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194: 281-301.
    • (1991) Methods Enzymol. , vol.194 , pp. 281-301
    • Rothstein, R.1
  • 46
    • 0021742268 scopus 로고
    • The minimum amount of homology required for homologous recombination in mammalian cells
    • RUBNITZ, J., and S. SUBRAMANI, 1984 The minimum amount of homology required for homologous recombination in mammalian cells. Mol. Cell. Biol. 4: 2253-2258.
    • (1984) Mol. Cell. Biol. , vol.4 , pp. 2253-2258
    • Rubnitz, J.1    Subramani, S.2
  • 47
    • 0028606403 scopus 로고
    • Mechanisms of DNA excision repair
    • SANCAR, A., 1994 Mechanisms of DNA excision repair. Science 266: 1954-1956.
    • (1994) Science , vol.266 , pp. 1954-1956
    • Sancar, A.1
  • 48
    • 0028362248 scopus 로고
    • The ERCC2 DNA repair gene is associated with the class II BTF2/TFIIH transcription factor
    • SCHAEFFER, L., V. MONCOLLIN, R. ROY, A. STAUB, M. MEZZINA et al., 1994 The ERCC2 DNA repair gene is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13: 2388-2392.
    • (1994) EMBO J. , vol.13 , pp. 2388-2392
    • Schaeffer, L.1    Moncollin, V.2    Roy, R.3    Staub, A.4    Mezzina, M.5
  • 49
    • 0027998890 scopus 로고
    • ALL-1 tandem duplications in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements
    • SCHICHMAN, S. A., M. A. CALIGURI, M. P. STROUT, S. L. CARTER, Y. GU et al., 1994 ALL-1 tandem duplications in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res. 54: 4277-4280.
    • (1994) Cancer Res. , vol.54 , pp. 4277-4280
    • Schichman, S.A.1    Caliguri, M.A.2    Strout, M.P.3    Carter, S.L.4    Gu, Y.5
  • 50
    • 0026020420 scopus 로고
    • Vectors for expression of cloned genes in yeast: Regulation, overproduction and underproduction
    • SCHNEIDER, J. C., and L. GUARENTE, 1991 Vectors for expression of cloned genes in yeast: regulation, overproduction and underproduction. Methods Enzymol. 194: 373-388.
    • (1991) Methods Enzymol. , vol.194 , pp. 373-388
    • Schneider, J.C.1    Guarente, L.2
  • 51
    • 0028918202 scopus 로고
    • Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae
    • SELVA, E. M., L. NEW, G. F. CROUSE and R. S. LAHUE, 1995 Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139: 1175-1188.
    • (1995) Genetics , vol.139 , pp. 1175-1188
    • Selva, E.M.1    New, L.2    Crouse, G.F.3    Lahue, R.S.4
  • 52
    • 0022689021 scopus 로고
    • Homologous recombination in Escherichia coli: Dependence on substrate length and homology
    • SHEN, P., and H. V. HUANG, 1986 Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112: 441-457.
    • (1986) Genetics , vol.112 , pp. 441-457
    • Shen, P.1    Huang, H.V.2
  • 54
    • 0026090063 scopus 로고
    • In vitro mutagenesis and plasmid shuffling: From cloned gene to mutant yeast
    • SIKORSKI, R. S., and J. D. BOEKE, 1991 In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194: 302-318.
    • (1991) Methods Enzymol. , vol.194 , pp. 302-318
    • Sikorski, R.S.1    Boeke, J.D.2
  • 55
    • 0031016620 scopus 로고    scopus 로고
    • MLL self fusion mediated by Alu repeat homologous recombination and prognosis of AML-M4/M5 subtypes
    • SO, C. W., Z. G. MA, C. M. PRICE, S. DONG, S. J. CHEN et al., 1997 MLL self fusion mediated by Alu repeat homologous recombination and prognosis of AML-M4/M5 subtypes. Cancer Res. 57: 117-122.
    • (1997) Cancer Res. , vol.57 , pp. 117-122
    • So, C.W.1    Ma, Z.G.2    Price, C.M.3    Dong, S.4    Chen, S.J.5
  • 56
    • 0025640777 scopus 로고
    • Effects of multiple yeast rad3 mutant alleles on UV sensitivity, mutability, and mitotic recombination
    • SONG, J. M., B. A. MONTELONE, W. SIEDE and E. C. FRIEDBERG, 1990 Effects of multiple yeast rad3 mutant alleles on UV sensitivity, mutability, and mitotic recombination. J. Bacteriol. 172: 6620-6630.
    • (1990) J. Bacteriol. , vol.172 , pp. 6620-6630
    • Song, J.M.1    Montelone, B.A.2    Siede, W.3    Friedberg, E.C.4
  • 58
    • 0024095589 scopus 로고
    • Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP
    • SUNG, P., D. HIGGINS, L. PRAKASH and S. PRAKASH, 1988 Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 7: 3263-3269.
    • (1988) EMBO J. , vol.7 , pp. 3263-3269
    • Sung, P.1    Higgins, D.2    Prakash, L.3    Prakash, S.4
  • 59
    • 0030010184 scopus 로고    scopus 로고
    • DNA repair deficiencies associated with mutations in genes encoding subunits of transcription initiation factor TFIIH in yeast
    • SWEDER, K. S., R. CHUN, T. MORI and P. C. HANAWALT, 1996 DNA repair deficiencies associated with mutations in genes encoding subunits of transcription initiation factor TFIIH in yeast. Nucleic Acids Res. 24: 1540-1546.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 1540-1546
    • Sweder, K.S.1    Chun, R.2    Mori, T.3    Hanawalt, P.C.4
  • 60
    • 0024370763 scopus 로고
    • The genetic control of direct-repeat recombination in Saccharomyces: The effect of rad52 and rad1 on mitotic recombination of a GAL10 transcriptionally regulated gene
    • THOMAS, B. J., and R. ROTHSTEIN, 1989 The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination of a GAL10 transcriptionally regulated gene. Genetics 123: 725-738.
    • (1989) Genetics , vol.123 , pp. 725-738
    • Thomas, B.J.1    Rothstein, R.2
  • 61
    • 0023684936 scopus 로고
    • Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology
    • WALDMAN, A. S., and R. M. LISKAY, 1988 Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8: 5350-5357.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 5350-5357
    • Waldman, A.S.1    Liskay, R.M.2
  • 62
    • 0024324482 scopus 로고
    • A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase
    • WALLIS, J. W., G. CHREBET, G. BRODSKY, M. ROLFE and R. ROTHSTEIN, 1989 A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58: 409-419.
    • (1989) Cell , vol.58 , pp. 409-419
    • Wallis, J.W.1    Chrebet, G.2    Brodsky, G.3    Rolfe, M.4    Rothstein, R.5
  • 63
    • 0028349469 scopus 로고
    • Transcription factor b (TFIIH) is required during nucleotide excision repair in yeast
    • WANG, Z., J. Q. SVEJSTRUP, W. J. FEAVER, X. WU, R. D. KORNBERG et al., 1994 Transcription factor b (TFIIH) is required during nucleotide excision repair in yeast. Nature 368: 74-76.
    • (1994) Nature , vol.368 , pp. 74-76
    • Wang, Z.1    Svejstrup, J.Q.2    Feaver, W.J.3    Wu, X.4    Kornberg, R.D.5
  • 64
    • 0019777042 scopus 로고
    • Incision and postincision step of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae
    • WILCOX, D. R., and L. PRAKASH, 1981 Incision and postincision step of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J. Bacteriol. 148: 618-623.
    • (1981) J. Bacteriol. , vol.148 , pp. 618-623
    • Wilcox, D.R.1    Prakash, L.2
  • 65
    • 0027080295 scopus 로고
    • SSL1, a suppressor of a HIS4 5′-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast
    • YOON, H., S. P. MILLER, E. K. PABICH and T. F. DONAHUE, 1993 SSL1, a suppressor of a HIS4 5′-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. Genes Dev. 6: 2463-2477.
    • (1993) Genes Dev. , vol.6 , pp. 2463-2477
    • Yoon, H.1    Miller, S.P.2    Pabich, E.K.3    Donahue, T.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.