메뉴 건너뛰기




Volumn 46, Issue 1, 1998, Pages 170-182

Asymptotic performance analysis of subspace adaptive algorithms introduced in the neural network literature

Author keywords

Adaptive estimation; Array signal processing; Covariance matrices; Eigenvalues eigenfunctions; Neural networks, principal component analysis; Subspace adaptive algorithm

Indexed keywords

ADAPTIVE ALGORITHMS; ASYMPTOTIC STABILITY; EIGENVALUES AND EIGENFUNCTIONS; MATRIX ALGEBRA; PERFORMANCE; SIGNAL PROCESSING;

EID: 0031674037     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/78.651207     Document Type: Article
Times cited : (13)

References (27)
  • 2
    • 0026954958 scopus 로고    scopus 로고
    • Principal components, minor components and linear neural networks
    • vol. 5, pp. 927-935, 1992.
    • E. OjaPrincipal components, minor components and linear neural networksNeural Networks, vol. 5, pp. 927-935, 1992.
    • Neural Networks
    • Oja, E.1
  • 4
    • 0025474239 scopus 로고    scopus 로고
    • Tracking a few extreme singular values and vectors in signal processing
    • vol. 78, pp. 1327-1343, Aug. 1990.
    • P. Comon and G. H. GolubTracking a few extreme singular values and vectors in signal processingProc. IEEE, vol. 78, pp. 1327-1343, Aug. 1990.
    • Proc. IEEE
    • Comon, P.1    Golub, G.H.2
  • 5
    • 0026222695 scopus 로고    scopus 로고
    • Convergence of learning algorithms with constant learning rates
    • vol. 2, pp. 484-489, Sept. 1991.
    • C. M. Kuan and K. HornikConvergence of learning algorithms with constant learning ratesIEEE Trans. Neural Networks, vol. 2, pp. 484-489, Sept. 1991.
    • IEEE Trans. Neural Networks
    • Kuan, C.M.1    Hornik, K.2
  • 6
    • 0029772973 scopus 로고    scopus 로고
    • Asymptotic distribution of recursive subspace estimators
    • 1996, pp. 1764-1767.
    • B. Yang and F. GersemskyAsymptotic distribution of recursive subspace estimatorsProc. ICASSP, Atlanta, GA, May 1996, pp. 1764-1767.
    • Proc. ICASSP, Atlanta, GA, May
    • Yang, B.1    Gersemsky, F.2
  • 7
    • 0028996445 scopus 로고    scopus 로고
    • Performance analysis of parametrized adaptive eigensubspace algorithms
    • 1995, pp. 2056-2059.
    • J. P. DelmasPerformance analysis of parametrized adaptive eigensubspace algorithmsProc. ICASSP, Detroit, MI, May 1995, pp. 2056-2059.
    • Proc. ICASSP, Detroit, MI, May
    • Delmas, J.P.1
  • 8
    • 33747791014 scopus 로고    scopus 로고
    • Performance analysis of an adaptative algorithm for tracking dominant subspaces
    • J. P. Delmas and J. F. CardosoPerformance analysis of an adaptative algorithm for tracking dominant subspaces submitted for publication.
    • Submitted for Publication.
    • Delmas, J.P.1    Cardoso, J.F.2
  • 9
    • 0002198379 scopus 로고    scopus 로고
    • Computational aspects of F. L. Bauer's simultaneous iteration method
    • vol. 13 pp. 4-13, 1969.
    • H. RutishauserComputational aspects of F. L. Bauer's simultaneous iteration methodNumer. Math. vol. 13 pp. 4-13, 1969.
    • Numer. Math.
    • Rutishauser, H.1
  • 11
    • 0028496455 scopus 로고    scopus 로고
    • Global analysis of Oja's flow for neural networks
    • vol. 5, pp. 674-683, Sept. 1994.
    • W.-Y. Yan, U. Helmke, and J. B. MooreGlobal analysis of Oja's flow for neural networksIEEE Trans. Neural Networks, vol. 5, pp. 674-683, Sept. 1994.
    • IEEE Trans. Neural Networks
    • Yan, W.-Y.1    Helmke, U.2    Moore, J.B.3
  • 12
    • 0029196852 scopus 로고    scopus 로고
    • Projection approximation subspace tracking
    • vol. 43, pp. 95-107, Jan. 1995.
    • B. YangProjection approximation subspace trackingIEEE Trans. Signal Processing, vol. 43, pp. 95-107, Jan. 1995.
    • IEEE Trans. Signal Processing
    • Yang, B.1
  • 13
    • 33747751017 scopus 로고    scopus 로고
    • Convergence analysis of the subspace tracking algorithms PAST and PASTd
    • 1996, pp. 1760-1763.
    • _Convergence analysis of the subspace tracking algorithms PAST and PASTdProc. ICASSP, Atlanta, GA, May 1996, pp. 1760-1763.
    • Proc. ICASSP, Atlanta, GA, May
  • 15
    • 0024883243 scopus 로고    scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward network
    • vol. 2, pp. 459-473, 1989.
    • T. D. SangerOptimal unsupervised learning in a single-layer linear feedforward networkNeural Networks, vol. 2, pp. 459-473, 1989.
    • Neural Networks
    • Sanger, T.D.1
  • 16
    • 0001387410 scopus 로고    scopus 로고
    • Principal component analysis by homogeneous neural networks, Part I: The weighted subspace criterion
    • vol. E 75-D, pp. 366-375, 1992.
    • E. Oja, H. Ogawa, and J. WangviwattanaPrincipal component analysis by homogeneous neural networks, Part I: The weighted subspace criterionIEICE Trans. Inform. Syst., vol. E75-D, pp. 366-375, 1992.
    • IEICE Trans. Inform. Syst.
    • Oja, E.1    Ogawa, H.2    Wangviwattana, J.3
  • 17
    • 33747797807 scopus 로고    scopus 로고
    • Principal component analysis by homogeneous neural networks, Part II: Analysis and extensions of the learning algorithms
    • vol. E 75-D, no. 3, pp. 376-382, 1992.
    • _Principal component analysis by homogeneous neural networks, Part II: Analysis and extensions of the learning algorithmsIEICE Trans. Inform. Syst., vol. E75-D, no. 3, pp. 376-382, 1992.
    • IEICE Trans. Inform. Syst.
  • 18
    • 0020464111 scopus 로고    scopus 로고
    • A simplified neuron model as a principal components analyzer
    • vol. 15, pp. 267-273, 1982.
    • E. OjaA simplified neuron model as a principal components analyzerJ. Math. Biol, vol. 15, pp. 267-273, 1982.
    • J. Math. Biol
    • Oja, E.1
  • 19
    • 0029764968 scopus 로고    scopus 로고
    • Adaptive subspace estimation-Application to moving sources localization and blind channel identification
    • 1996, pp. 1649-1652.
    • C. Riou, T. Chonavel, and P. Y. CochetAdaptive subspace estimation-Application to moving sources localization and blind channel identificationProc. ICASSP, Atlanta, GA, May 1996, pp. 1649-1652.
    • Proc. ICASSP, Atlanta, GA, May
    • Riou, C.1    Chonavel, T.2    Cochet, P.Y.3
  • 20
    • 0026745682 scopus 로고    scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • vol. 5, no. 3, pp. 441-457, 1992.
    • L. Xu, E. Oja, and C. SuenModified Hebbian learning for curve and surface fittingNeural Networks, vol. 5, no. 3, pp. 441-457, 1992.
    • Neural Networks
    • Xu, L.1    Oja, E.2    Suen, C.3
  • 22
    • 0002308310 scopus 로고    scopus 로고
    • Adaptive blind separation of independent sources: A deflation approach
    • vol. 45, pp. 59-83, 1995.
    • N. Delfosse and P. LoubatonAdaptive blind separation of independent sources: A deflation approachSignal Process., vol. 45, pp. 59-83, 1995.
    • Signal Process.
    • Delfosse, N.1    Loubaton, P.2
  • 23
    • 0026727495 scopus 로고    scopus 로고
    • Convergence analysis of local feature extraction algorithms
    • vol. 5, pp. 229-240, 1992.
    • K. Hornik and C. M. KuanConvergence analysis of local feature extraction algorithmsNeural Networks, vol. 5, pp. 229-240, 1992.
    • Neural Networks
    • Hornik, K.1    Kuan, C.M.2
  • 24
    • 0022013023 scopus 로고    scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • vol. 106, pp. 69-84, 1985.
    • E. Oja and J. KarhunenOn stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrixJ. Math. Anal. Appl., vol. 106, pp. 69-84, 1985.
    • J. Math. Anal. Appl.
    • Oja, E.1    Karhunen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.