-
1
-
-
0017526570
-
Analysis of recursive stochastic algorithms
-
L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Automat. Contr., vol. AC-22, pp. 551–575, 1977.
-
(1977)
IEEE Trans. Automat. Contr.
, vol.22 AC
, pp. 551-575
-
-
Ljung, L.1
-
3
-
-
0020464111
-
A simplified neuron model as a principal component analyzer
-
E. Oja, “A simplified neuron model as a principal component analyzer,” J. Math, and Biol., vol. 15, pp. 267–273, 1982.
-
(1982)
J. Math, and Biol.
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
4
-
-
0022013023
-
On stochastic approximation of the eigenvectors and the eigenvalues of the expectation of a random matrix
-
E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and the eigenvalues of the expectation of a random matrix,” J. Math. Anal. and Appl., vol. 106, pp. 69–84, 1985.
-
(1985)
J. Math. Anal. and Appl.
, vol.106
, pp. 69-84
-
-
Oja, E.1
Karhunen, J.2
-
5
-
-
0012195187
-
Some asymptotic results for learning in single hidden-layer feedforward network models
-
H. White, “Some asymptotic results for learning in single hidden-layer feedforward network models,” J. Amer. Statist. Ass., vol. 84, pp. 1003–1013, 1989.
-
(1989)
J. Amer. Statist. Ass.
, vol.84
, pp. 1003-1013
-
-
White, H.1
-
6
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network
-
T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459–473, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 459-473
-
-
Sanger, T.D.1
-
7
-
-
84949082082
-
Convergence analysis of local feature extraction algorithms
-
College of Commerce, University of Illinois at Urbana-Champaign
-
K. Hornik and C.-M. Kuan, “Convergence analysis of local feature extraction algorithms,” BEBR Discussion Paper 90–1717, College of Commerce, University of Illinois at Urbana-Champaign, 1990.
-
(1990)
BEBR Discussion Paper 90–1717
, pp. 90-1717
-
-
Hornik, K.1
Kuan, C.M.2
-
8
-
-
84949077590
-
Recursive M-estimation, nonlinear regression and neural network learning with dependent observations
-
College of Commerce, University of Illinois, Urbana-Champaign
-
C.-M. Kuan and H. White, “Recursive M-estimation, nonlinear regression and neural network learning with dependent observations,” BEBR Working Paper 90–1703, College of Commerce, University of Illinois, Urbana-Champaign, 1990.
-
(1990)
BEBR Working Paper 90–1703
, pp. 90-1703
-
-
Kuan, C.M.1
White, H.2
-
11
-
-
0021385712
-
Weak convergence and asymptotic properties of adaptive filters with constant gains
-
H. J. Kushner and A. Shwartz, “Weak convergence and asymptotic properties of adaptive filters with constant gains,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 177–182, 1984.
-
(1984)
IEEE Trans. Inform. Theory
, vol.30 IT
, pp. 177-182
-
-
Kushner, H.J.1
Shwartz, A.2
-
12
-
-
0000646059
-
Learning internal representations by error propagation
-
Cambridge, MA: MIT Press
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructures of Cognition, D. E. Rumelhart et al., Eds. Cambridge, MA: MIT Press, 1986, vol. 1, ch. 8, 318–362.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructures of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
13
-
-
0024774330
-
Neural networks and principal component analysis: Learning from examples without local minima
-
P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning from examples without local minima,” Neural Networks, vol. 2, pp. 53–58, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 53-58
-
-
Baldi, P.1
Hornik, K.2
-
14
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and singular value decomposition,” Biol. Cybern., vol. 59, pp. 291–294, 1988.
-
(1988)
Biol. Cybern.
, vol.59
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
15
-
-
0023981750
-
Self-organization in a perceptual network
-
R. Linsker, “Self-organization in a perceptual network,” Computer, vol. 21, pp. 105–117, 1988.
-
(1988)
Computer
, vol.21
, pp. 105-117
-
-
Linsker, R.1
-
16
-
-
33847117982
-
Back-propagation and unsupervised learning in linear networks
-
Y. Chauvin and D. E. Rumelhart, Eds. Earlbaum Associates
-
P. Baldi and K. Hornik, “Back-propagation and unsupervised learning in linear networks,” in Back Propagation: Theory, Architectures and Applications, Y. Chauvin and D. E. Rumelhart, Eds. Earlbaum Associates, 1991.
-
(1991)
Back Propagation: Theory, Architectures and Applications
-
-
Baldi, P.1
Hornik, K.2
-
17
-
-
0038397430
-
Feature discovery through error-correction learning
-
Institute of Cognitive Science, University of California, San Diego
-
R. J. Williams, “Feature discovery through error-correction learning,” Tech. Rep. 8501, Institute of Cognitive Science, University of California, San Diego, 1985.
-
(1985)
Tech. Rep. 8501
-
-
Williams, R.J.1
-
18
-
-
0006986074
-
Linear learning: Landscapes and algorithms
-
P. Baldi, “Linear learning: Landscapes and algorithms,” in Proc. 1988 NIPS Conf (Denver), 1988.
-
(1988)
Proc. 1988 NIPS Conf (Denver)
-
-
Baldi, P.1
-
19
-
-
0002399288
-
Neural networks, principal components, and subspaces
-
E. Oja, “Neural networks, principal components, and subspaces,” Int. J. Neural Systems, vol. 1, pp. 61–68, 1989.
-
(1989)
Int. J. Neural Systems
, vol.1
, pp. 61-68
-
-
Oja, E.1
-
20
-
-
0006905298
-
Hebbian learning of principal components
-
R. Eckmiller et al., Eds. New York: Elsevier
-
A. Krogh and J. A. Hertz, “Hebbian learning of principal components,” in Parallel Processing in Neural Systems and Computers, R. Eckmiller et al., Eds. New York: Elsevier, 1990, pp. 183–186.
-
(1990)
Parallel Processing in Neural Systems and Computers
, pp. 183-186
-
-
Krogh, A.1
Hertz, J.A.2
-
21
-
-
84949083083
-
A self-organizing network for principal component analysis
-
Munich, Germany
-
J. Rubner and P. Tavian, “A self-organizing network for principal component analysis,” Preprint, Physics Department, Technische Universitat München, Munich, Germany, 1990.
-
(1990)
Preprint, Physics Department, Technische Universitat München
-
-
Rubner, J.1
Tavian, P.2
-
22
-
-
0024936898
-
Adaptive network for optimal linear feature extraction
-
P. Földiák, “Adaptive network for optimal linear feature extraction,” in Proc. Int. Joint Conf. Neural Networks, 1989, pp. I:401 – 405.
-
(1989)
Proc. Int. Joint Conf. Neural Networks
, pp. I:401-I:405
-
-
Földiák, P.1
|