메뉴 건너뛰기




Volumn 2, Issue 5, 1991, Pages 484-489

Convergence of Learning Algorithms with Constant Learning Rates

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER PROGRAMMING - ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL TECHNIQUES - DIFFERENTIAL EQUATIONS; PROBABILITY - RANDOM PROCESSES;

EID: 0026222695     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.134285     Document Type: Article
Times cited : (100)

References (23)
  • 1
    • 0017526570 scopus 로고
    • Analysis of recursive stochastic algorithms
    • L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Automat. Contr., vol. AC-22, pp. 551–575, 1977.
    • (1977) IEEE Trans. Automat. Contr. , vol.22 AC , pp. 551-575
    • Ljung, L.1
  • 3
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, “A simplified neuron model as a principal component analyzer,” J. Math, and Biol., vol. 15, pp. 267–273, 1982.
    • (1982) J. Math, and Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 4
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and the eigenvalues of the expectation of a random matrix
    • E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and the eigenvalues of the expectation of a random matrix,” J. Math. Anal. and Appl., vol. 106, pp. 69–84, 1985.
    • (1985) J. Math. Anal. and Appl. , vol.106 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 5
    • 0012195187 scopus 로고
    • Some asymptotic results for learning in single hidden-layer feedforward network models
    • H. White, “Some asymptotic results for learning in single hidden-layer feedforward network models,” J. Amer. Statist. Ass., vol. 84, pp. 1003–1013, 1989.
    • (1989) J. Amer. Statist. Ass. , vol.84 , pp. 1003-1013
    • White, H.1
  • 6
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459–473, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 7
    • 84949082082 scopus 로고
    • Convergence analysis of local feature extraction algorithms
    • College of Commerce, University of Illinois at Urbana-Champaign
    • K. Hornik and C.-M. Kuan, “Convergence analysis of local feature extraction algorithms,” BEBR Discussion Paper 90–1717, College of Commerce, University of Illinois at Urbana-Champaign, 1990.
    • (1990) BEBR Discussion Paper 90–1717 , pp. 90-1717
    • Hornik, K.1    Kuan, C.M.2
  • 8
    • 84949077590 scopus 로고
    • Recursive M-estimation, nonlinear regression and neural network learning with dependent observations
    • College of Commerce, University of Illinois, Urbana-Champaign
    • C.-M. Kuan and H. White, “Recursive M-estimation, nonlinear regression and neural network learning with dependent observations,” BEBR Working Paper 90–1703, College of Commerce, University of Illinois, Urbana-Champaign, 1990.
    • (1990) BEBR Working Paper 90–1703 , pp. 90-1703
    • Kuan, C.M.1    White, H.2
  • 11
    • 0021385712 scopus 로고
    • Weak convergence and asymptotic properties of adaptive filters with constant gains
    • H. J. Kushner and A. Shwartz, “Weak convergence and asymptotic properties of adaptive filters with constant gains,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 177–182, 1984.
    • (1984) IEEE Trans. Inform. Theory , vol.30 IT , pp. 177-182
    • Kushner, H.J.1    Shwartz, A.2
  • 13
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning from examples without local minima,” Neural Networks, vol. 2, pp. 53–58, 1989.
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 14
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and singular value decomposition,” Biol. Cybern., vol. 59, pp. 291–294, 1988.
    • (1988) Biol. Cybern. , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 15
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • R. Linsker, “Self-organization in a perceptual network,” Computer, vol. 21, pp. 105–117, 1988.
    • (1988) Computer , vol.21 , pp. 105-117
    • Linsker, R.1
  • 16
    • 33847117982 scopus 로고
    • Back-propagation and unsupervised learning in linear networks
    • Y. Chauvin and D. E. Rumelhart, Eds. Earlbaum Associates
    • P. Baldi and K. Hornik, “Back-propagation and unsupervised learning in linear networks,” in Back Propagation: Theory, Architectures and Applications, Y. Chauvin and D. E. Rumelhart, Eds. Earlbaum Associates, 1991.
    • (1991) Back Propagation: Theory, Architectures and Applications
    • Baldi, P.1    Hornik, K.2
  • 17
    • 0038397430 scopus 로고
    • Feature discovery through error-correction learning
    • Institute of Cognitive Science, University of California, San Diego
    • R. J. Williams, “Feature discovery through error-correction learning,” Tech. Rep. 8501, Institute of Cognitive Science, University of California, San Diego, 1985.
    • (1985) Tech. Rep. 8501
    • Williams, R.J.1
  • 18
    • 0006986074 scopus 로고
    • Linear learning: Landscapes and algorithms
    • P. Baldi, “Linear learning: Landscapes and algorithms,” in Proc. 1988 NIPS Conf (Denver), 1988.
    • (1988) Proc. 1988 NIPS Conf (Denver)
    • Baldi, P.1
  • 19
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • E. Oja, “Neural networks, principal components, and subspaces,” Int. J. Neural Systems, vol. 1, pp. 61–68, 1989.
    • (1989) Int. J. Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 20
    • 0006905298 scopus 로고
    • Hebbian learning of principal components
    • R. Eckmiller et al., Eds. New York: Elsevier
    • A. Krogh and J. A. Hertz, “Hebbian learning of principal components,” in Parallel Processing in Neural Systems and Computers, R. Eckmiller et al., Eds. New York: Elsevier, 1990, pp. 183–186.
    • (1990) Parallel Processing in Neural Systems and Computers , pp. 183-186
    • Krogh, A.1    Hertz, J.A.2
  • 22
    • 0024936898 scopus 로고
    • Adaptive network for optimal linear feature extraction
    • P. Földiák, “Adaptive network for optimal linear feature extraction,” in Proc. Int. Joint Conf. Neural Networks, 1989, pp. I:401 – 405.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. I:401-I:405
    • Földiák, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.