메뉴 건너뛰기




Volumn 38, Issue 5, 1997, Pages 2694-2709

Schouten-Nijenhuis brackets

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0031493449     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.531981     Document Type: Article
Times cited : (19)

References (23)
  • 1
    • 21344489478 scopus 로고
    • Geometric prequantization on the spin bundle based on n-symplectic geometry, the Dirac equation
    • J. K. Lawson, R. O. Fulp, and L. K. Norris, "Geometric prequantization on the spin bundle based on n-symplectic geometry, The Dirac equation," Int. J. Theor. Phys. 33, 1011-1028 (1994).
    • (1994) Int. J. Theor. Phys. , vol.33 , pp. 1011-1028
    • Lawson, J.K.1    Fulp, R.O.2    Norris, L.K.3
  • 2
    • 0030268639 scopus 로고    scopus 로고
    • Generalized symplectic geometry as a covering theory for the hamiltonian theories of classical particles and fields
    • J. K. Lawson, R. O. Fulp, and L. K. Norris, "Generalized symplectic geometry as a covering theory for the hamiltonian theories of classical particles and fields," J. Geom. Phys. 20, 195-206 (1996).
    • (1996) J. Geom. Phys. , vol.20 , pp. 195-206
    • Lawson, J.K.1    Fulp, R.O.2    Norris, L.K.3
  • 4
    • 0000653129 scopus 로고
    • Generalized symplectic geometry on the frame bundle of a manifold
    • AMS, Providence, RI
    • L. K. Norris, "Generalized symplectic geometry on the frame bundle of a manifold," in Proceedings of the Symposium on Pure Mathematics (AMS, Providence, RI, 1993), Vol. 54, pp. 435-465.
    • (1993) Proceedings of the Symposium on Pure Mathematics , vol.54 , pp. 435-465
    • Norris, L.K.1
  • 5
    • 0002489478 scopus 로고
    • Symplectic geometry on T*M derived from n-symplectic geometry on LM
    • L. K. Norris, "Symplectic geometry on T*M derived from n-symplectic geometry on LM," J. Geom. Phys. 13, 51-78 (1994).
    • (1994) J. Geom. Phys. , vol.13 , pp. 51-78
    • Norris, L.K.1
  • 6
    • 0000865547 scopus 로고
    • Über differentialkomitanten zweier kontravarianter grossen
    • J. A. Schouten, "Über differentialkomitanten zweier kontravarianter grossen," Proc. Kon. Ned. Akad. Wet. Amsterdam 43, 449-452 (1940).
    • (1940) Proc. Kon. Ned. Akad. Wet. Amsterdam , vol.43 , pp. 449-452
    • Schouten, J.A.1
  • 7
    • 0001031484 scopus 로고
    • Jacobi-type identities for bilinear differential concomitants of certain tensor fields
    • A. Nijenhuis, "Jacobi-type identities for bilinear differential concomitants of certain tensor fields," Indag. Math. 17, 390-403 (1955).
    • (1955) Indag. Math. , vol.17 , pp. 390-403
    • Nijenhuis, A.1
  • 8
    • 0000498955 scopus 로고
    • Poisson algebras and Poisson manifolds
    • Longman Scientific and Technical, Essex
    • K. H. Bhaskara and K. Viswanath, "Poisson algebras and Poisson manifolds," Pitman Research Notes in Mathematics (Longman Scientific and Technical, Essex, 1988), Vol. 174.
    • (1988) Pitman Research Notes in Mathematics , vol.174
    • Bhaskara, K.H.1    Viswanath, K.2
  • 11
    • 85033127770 scopus 로고    scopus 로고
    • See the Note added in proof in Ref. 7, p. 397
    • See the Note added in proof in Ref. 7, p. 397.
  • 14
    • 85033156842 scopus 로고    scopus 로고
    • note
    • The intrinsic definition yields the nonhomogeneous polynomials. One can then define the subspace of homogeneous polynomials of degree q to be composed of the degree q polynomials that satisfy the equation ℰ(f) = -qf, where ℰ is the Euler vector field on T*M defined by θ=-ℰ⌋dθ, and θ is the ℝ-valued canonical one-form on T*M.
  • 15
    • 0000478109 scopus 로고
    • The graded lie algebra of multivector fields and the generalized lie derivative of forms
    • W. Tulczyjew, "The graded lie algebra of multivector fields and the generalized lie derivative of forms," Bull. Acad. Polon. Sci. 22, 937-942 (1974).
    • (1974) Bull. Acad. Polon. Sci. , vol.22 , pp. 937-942
    • Tulczyjew, W.1
  • 17
    • 85033142374 scopus 로고    scopus 로고
    • note
    • cursive Greek chi(M).
  • 19
    • 0010858717 scopus 로고
    • Hamiltonian actions on poisson manifolds
    • edited by A. Crumeyrolle and J. Drifone, number 80 in Research Notes in Mathematics Pitman, Boston
    • R. Ouzilou, "Hamiltonian actions on poisson manifolds," in Symplectic Geometry, edited by A. Crumeyrolle and J. Drifone, number 80 in Research Notes in Mathematics (Pitman, Boston, 1983), pp. 172-183.
    • (1983) Symplectic Geometry , pp. 172-183
    • Ouzilou, R.1
  • 22
    • 0002956967 scopus 로고
    • A multisymplectic framework for classical field theory and the calculus of variations, I: Covariant hamiltonian formalism
    • edited by M. Francaviglia North Holland, Amsterdam
    • M. Gotay, "A multisymplectic framework for classical field theory and the calculus of variations, I: Covariant hamiltonian formalism," in Mechanics, Analysis and Geometry: 200 Years after Lagrange, edited by M. Francaviglia (North Holland, Amsterdam, 1991), pp. 203-235.
    • (1991) Mechanics, Analysis and Geometry: 200 Years after Lagrange , pp. 203-235
    • Gotay, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.