-
2
-
-
21344489478
-
Geometric prequantization on the spin bundle based on n-symplectic geometry: The Dirac equation
-
[2] R.O. Fulp, J.K. Lawson and L.K. Norris, Geometric prequantization on the spin bundle based on n-symplectic geometry: The Dirac equation, Internat. J. Theoret. Phys. 33 (1994) 1011-1028.
-
(1994)
Internat. J. Theoret. Phys.
, vol.33
, pp. 1011-1028
-
-
Fulp, R.O.1
Lawson, J.K.2
Norris, L.K.3
-
3
-
-
0000667858
-
A multisymplectic approach to the KdV equation
-
eds. K. Bleuler and M. Werner, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Kluwer, Dordrecht
-
[3] M. Gotay, A multisymplectic approach to the KdV equation, in: Differential Geometric Methods in Theoretical Physics, eds. K. Bleuler and M. Werner, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 250 (Kluwer, Dordrecht, 1988) 295-305.
-
(1988)
Differential Geometric Methods in Theoretical Physics
, vol.250
, pp. 295-305
-
-
Gotay, M.1
-
4
-
-
0002956967
-
A multisymplectic framework for classical field theory and the calculus of variations, I: Covariant Hamiltonian formalism
-
ed. M. Francaviglia North-Holland, Amsterdam
-
[4] M. Gotay, A multisymplectic framework for classical field theory and the calculus of variations, I: Covariant Hamiltonian formalism, in: Mechanics, Analysis and Geometry: 200 Years after Lagrange, ed. M. Francaviglia (North-Holland, Amsterdam, 1991) 203-235.
-
(1991)
Mechanics, Analysis and Geometry: 200 Years after Lagrange
, pp. 203-235
-
-
Gotay, M.1
-
6
-
-
84972525384
-
The polysymplectic Hamiltonian formalism in field theory and calculus of variations, I: The local case
-
[6] C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations, I: The local case, J. Differential Geom. 25 (1987) 23-53.
-
(1987)
J. Differential Geom.
, vol.25
, pp. 23-53
-
-
Günther, C.1
-
7
-
-
0003347176
-
A symplectic framework for field theories
-
Springer, Berlin
-
[7] J. Kijowski and W.M. Tulczyjew, A symplectic framework for field theories, Lecture Notes in Math., Vol. 170 (Springer, Berlin, 1979).
-
(1979)
Lecture Notes in Math.
, vol.170
-
-
Kijowski, J.1
Tulczyjew, W.M.2
-
10
-
-
0001031484
-
Jacobi-type identities for bilinear differential concomitants of certain tensor fields
-
[10] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag. Math. 17 (1955) 390-403.
-
(1955)
Indag. Math.
, vol.17
, pp. 390-403
-
-
Nijenhuis, A.1
-
11
-
-
0003214040
-
Generalized symplectic geometry on the frame bundle of a manifold
-
eds. R.E. Greene and S.T. Yau
-
[11] L.K. Norris, Generalized symplectic geometry on the frame bundle of a manifold, in: AMS Summer Research Institute on Differential Geometry, eds. R.E. Greene and S.T. Yau (1990); Proc. Symp. Pure Math. Vol. 54, Part 2 (American Mathematical Soc., Providence, RI, 1993) 435-465.
-
(1990)
AMS Summer Research Institute on Differential Geometry
-
-
Norris, L.K.1
-
12
-
-
0000653129
-
-
American Mathematical Soc., Providence, RI
-
[11] L.K. Norris, Generalized symplectic geometry on the frame bundle of a manifold, in: AMS Summer Research Institute on Differential Geometry, eds. R.E. Greene and S.T. Yau (1990); Proc. Symp. Pure Math. Vol. 54, Part 2 (American Mathematical Soc., Providence, RI, 1993) 435-465.
-
(1993)
Proc. Symp. Pure Math.
, vol.54
, Issue.PART 2
, pp. 435-465
-
-
-
13
-
-
0002489478
-
Symplectic geometry on T*M derived from n-symplectic geometry on LM
-
[12] L.K. Norris, Symplectic geometry on T*M derived from n-symplectic geometry on LM, J. Geom. Phys. 13 (1994) 51-78.
-
(1994)
J. Geom. Phys.
, vol.13
, pp. 51-78
-
-
Norris, L.K.1
-
14
-
-
0000865547
-
Über Differentialkomitanten zweier kontravarianter Grossen
-
[13] J.A. Schouten, Über Differentialkomitanten zweier kontravarianter Grossen, Proc. Kon. Nedert. Akad. Wetensch. Amsterdam 43 (1940) 449-452.
-
(1940)
Proc. Kon. Nedert. Akad. Wetensch. Amsterdam
, vol.43
, pp. 449-452
-
-
Schouten, J.A.1
|