메뉴 건너뛰기




Volumn 15, Issue 3-4, 1997, Pages 273-307

Habituation based neural networks for spatio-temporal classification

Author keywords

Classification; Dynamic neural networks; Habituation; Recurrent networks; Spatio temporal signals

Indexed keywords

ACOUSTIC SIGNAL PROCESSING; COMPUTATIONAL COMPLEXITY; CORRELATION DETECTORS; DATA STORAGE EQUIPMENT; DISCRETE TIME CONTROL SYSTEMS; PARAMETER ESTIMATION; SIGNAL ENCODING; THEOREM PROVING; VECTORS;

EID: 0031171347     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(97)00010-6     Document Type: Article
Times cited : (11)

References (38)
  • 1
    • 0009464046 scopus 로고
    • Molecular approaches to the study of short-term and long-term memory
    • Clarendon Press, Oxford
    • C. Bailey, E. Kandel, Molecular approaches to the study of short-term and long-term memory, in: Functions of the Brain, Clarendon Press, Oxford, 1985, pp. 98-129.
    • (1985) Functions of the Brain , pp. 98-129
    • Bailey, C.1    Kandel, E.2
  • 2
    • 0342580095 scopus 로고
    • The time-into-intensity-mapping network
    • W. Banzhaf, K. Kyuma, The time-into-intensity-mapping network, Biol. Cybernet. 66(1991) 115-121.
    • (1991) Biol. Cybernet , vol.66 , pp. 115-121
    • Banzhaf, W.1    Kyuma, K.2
  • 4
    • 0013578505 scopus 로고
    • Mathematical model of cellular and molecular processes contributing to associative and nonassociative learning in aplysia
    • J.H. Byrne, W.O. Berry (Eds.), Academic Press, San Diego
    • J.H. Byrne, K.J. Gingrich, Mathematical model of cellular and molecular processes contributing to associative and nonassociative learning in aplysia, in: J.H. Byrne, W.O. Berry (Eds.), Neural Models of Plasticity, Academic Press, San Diego, 1989, pp. 58-70.
    • (1989) Neural Models of Plasticity , pp. 58-70
    • Byrne, J.H.1    Gingrich, K.J.2
  • 6
    • 0024861871 scopus 로고
    • Approximations by superposition of a sigmoidal function
    • G. Cybenko, Approximations by superposition of a sigmoidal function. Math. Control. Signals Systems, 2(1989) 303-314.
    • (1989) Math. Control. Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0026895542 scopus 로고
    • The gamma model - A new neural net model for temporal processing
    • B. de Vries, J.C. Principe, The gamma model - a new neural net model for temporal processing, Neural Networks 5 (1992) 565-576.
    • (1992) Neural Networks , vol.5 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman, Finding structure in time, Cognitive Sci. 14 (1990) 179-211.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 12
    • 0026939766 scopus 로고
    • A neural network based hybrid system for detection, characterization and classification of short-duration oceanic signals
    • J. Ghosh, L. Deuser, S. Beck, A neural network based hybrid system for detection, characterization and classification of short-duration oceanic signals. IEEE J. Ocean Eng. 17 (4) (1992) 351-363.
    • (1992) IEEE J. Ocean Eng. , vol.17 , Issue.4 , pp. 351-363
    • Ghosh, J.1    Deuser, L.2    Beck, S.3
  • 13
    • 0040114985 scopus 로고
    • Classification of spatio-temporal patterns with applications to recognition of sonar sequences
    • T. McMullen E, Covey, H. Hawkins, R. Port (Eds.)
    • J. Ghosh, L. Deuser, Classification of spatio-temporal patterns with applications to recognition of sonar sequences, in: T. McMullen E, Covey, H. Hawkins, R. Port (Eds.), Neural Representation of Temporal Patterns, 1995.
    • (1995) Neural Representation of Temporal Patterns
    • Ghosh, J.1    Deuser, L.2
  • 14
    • 84943258482 scopus 로고
    • A temporal memory network with state-dependent thresholds
    • San Francisco
    • J. Ghosh, S. Wang, A temporal memory network with state-dependent thresholds, in: proc. IEEE Internat. Conf. on Neural Networks, San Francisco, 1993, pp. I: 359-364.
    • (1993) Proc. IEEE Internat. Conf. on Neural Networks
    • Ghosh, J.1    Wang, S.2
  • 15
  • 16
    • 0024889344 scopus 로고
    • Adaptive classification of underwater transients
    • J.-P. Hermand, P. Nicolas, Adaptive classification of underwater transients, in: Proc. ICASSP, 1989, pp. 2712-2715.
    • (1989) Proc. ICASSP , pp. 2712-2715
    • Hermand, J.-P.1    Nicolas, P.2
  • 18
    • 0003284920 scopus 로고
    • Serial order, a parallel, distributed processing approach
    • J.L. Elman, D.E. Rumelhart, (Eds.), Lawrence Erlbaum, Hillsdale
    • M.I. Jordan, Serial order, a parallel, distributed processing approach, in: J.L. Elman, D.E. Rumelhart, (Eds.), Advances in Connectionist Theory: Speech, Lawrence Erlbaum, Hillsdale, 1989.
    • (1989) Advances in Connectionist Theory: Speech
    • Jordan, M.I.1
  • 20
    • 0023086802 scopus 로고
    • A model of neural network for spatiotemporal pattern recognition
    • S. Kurogi, A model of neural network for spatiotemporal pattern recognition, Biol. Cybernet. 57 (1987) 103-114.
    • (1987) Biol. Cybernet , vol.57 , pp. 103-114
    • Kurogi, S.1
  • 21
    • 84951490428 scopus 로고
    • Review of neural networks for speech recognition
    • R.P. Lippmann, Review of neural networks for speech recognition, Neural Comput. 1 (1) (1989) 1-38.
    • (1989) Neural Comput. , vol.1 , Issue.1 , pp. 1-38
    • Lippmann, R.P.1
  • 22
    • 0006004375 scopus 로고
    • Neural networks for spatio-temporal recognition
    • A. Maren, C. Harston, R. Pap (Eds.), Academic Press, London
    • A. Maren, Neural networks for spatio-temporal recognition, in: A. Maren, C. Harston, R. Pap (Eds.), Handbook of Neural Computing Applications, Academic Press, London, 1990, pp. 295-308.
    • (1990) Handbook of Neural Computing Applications , pp. 295-308
    • Maren, A.1
  • 23
    • 0002291616 scopus 로고
    • Neural network architectures for temporal sequence processing
    • A.S. Weigend, N.A. Gershenfeld (Eds.), Addison Wesley, Reading, MA
    • M.C. Mozer, Neural network architectures for temporal sequence processing, in: A.S. Weigend, N.A. Gershenfeld (Eds.), Time Series Prediction, Addison Wesley, Reading, MA, 1993, pp. 243-264.
    • (1993) Time Series Prediction , pp. 243-264
    • Mozer, M.C.1
  • 24
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • J. Park, I.W. Sandberg, Universal approximation using radial basis function networks, Neural Comput. 3 (2) (1991) 246-257.
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 25
    • 0025106113 scopus 로고
    • Neural response to auditory patterns
    • D. Robin, P. Abbas, L. Hug, Neural response to auditory patterns, J. Acoust. Soc. Amer. 87 (4) (1990) 1673-1682.
    • (1990) J. Acoust. Soc. Amer. , vol.87 , Issue.4 , pp. 1673-1682
    • Robin, D.1    Abbas, P.2    Hug, L.3
  • 27
    • 0342580089 scopus 로고
    • Multidimensional nonlinear systems and structure theorems
    • I.W. Sandberg, Multidimensional nonlinear systems and structure theorems, J. Circuits Systems Comput. 2 (4) (1992) 383-388.
    • (1992) J. Circuits Systems Comput. , vol.2 , Issue.4 , pp. 383-388
    • Sandberg, I.W.1
  • 30
    • 0028996612 scopus 로고
    • Habituation bases neural classifiers for spatio-temporal signals
    • B. Stiles, J. Ghosh, Habituation bases neural classifiers for spatio-temporal signals, in: Proc. of ICASSP-95, 1995.
    • (1995) Proc. of ICASSP-95
    • Stiles, B.1    Ghosh, J.2
  • 31
    • 0343449999 scopus 로고
    • A habituation based mechanism for encoding temporal information in artificial neural networks
    • Orlando, FL, April
    • B. Stiles, J. Ghosh, A habituation based mechanism for encoding temporal information in artificial neural networks, in: SPIE Conf. on Applications and Science of Artificial Neural Networks, vol. 2492, Orlando, FL, April 1995, pp. 404-415.
    • (1995) SPIE Conf. on Applications and Science of Artificial Neural Networks , vol.2492 , pp. 404-415
    • Stiles, B.1    Ghosh, J.2
  • 32
    • 0029765285 scopus 로고    scopus 로고
    • Some limitations of linear memory architectures for signal processing
    • Control, Robotics, and Signal/ Image Processing, Venice, Italy
    • B. Stiles, J. Ghosh, Some limitations of linear memory architectures for signal processing, in: Proc. 1996 Internat. Workshop on Neural Networks for Identification, Control, Robotics, and Signal/ Image Processing, Venice, Italy, 1996.
    • (1996) Proc. 1996 Internat. Workshop on Neural Networks for Identification
    • Stiles, B.1    Ghosh, J.2
  • 33
    • 0343449998 scopus 로고    scopus 로고
    • Some limitations of linear memory architectures for signal processing
    • The University of Texas at Austin, Computer and Vision Research Center
    • B. Stiles, J. Ghosh, Some limitations of linear memory architectures for signal processing. Technical Report 96-04-104, The University of Texas at Austin, Computer and Vision Research Center, 1996.
    • (1996) Technical Report 96-04-104
    • Stiles, B.1    Ghosh, J.2
  • 34
    • 0031269630 scopus 로고    scopus 로고
    • Complete memory structures for approximating nonlinear discrete time mappings
    • submitted
    • B. Stiles, I. Sandberg, J. Ghosh, Complete memory structures for approximating nonlinear discrete time mappings, IEEE Trans. Neural Networks, submitted.
    • IEEE Trans. Neural Networks
    • Stiles, B.1    Sandberg, I.2    Ghosh, J.3
  • 36
    • 0025488662 scopus 로고
    • Complex temporal sequence learning based on short-term memory
    • D. Wang, M.A. Arbib, Complex temporal sequence learning based on short-term memory, Proc. IEEE 78 (9) (1990) 1536-1544.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1536-1544
    • Wang, D.1    Arbib, M.A.2
  • 37
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent networks trajectories
    • R.J. Williams, J. Peng, An efficient gradient-based algorithm for on-line training of recurrent networks trajectories, Neural Comput. 2 (4) (1990) 490-501.
    • (1990) Neural Comput. , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 38
    • 0001202594 scopus 로고
    • A. learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams, D. Zipser, A. learning algorithm for continually running fully recurrent neural networks, Neural Comput. 1 (2) (1989) 270-280.
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.