-
1
-
-
0024861871
-
Approximations by superpositions of a sigmoidal function
-
G. Cybenko, "Approximations by superpositions of a sigmoidal function," Math. Contr., Signals, Syst., vol. 2, pp. 303-314, 1989.
-
(1989)
Math. Contr., Signals, Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
2
-
-
0000106040
-
Universal approximation using radial basis function networks
-
Summer
-
J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Computa., vol. 3, no. 2, pp. 246-257, Summer 1991.
-
(1991)
Neural Computa.
, vol.3
, Issue.2
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
4
-
-
33747710829
-
-
Computer and Vision Res. Center, Univ. Texas, Austin, Tech. Rep. TR-92-12-87, May
-
_, "Function approximation using higher-order connectionist networks," Computer and Vision Res. Center, Univ. Texas, Austin, Tech. Rep. TR-92-12-87, May 1992.
-
(1992)
Function Approximation Using Higher-order Connectionist Networks
-
-
-
6
-
-
0001321136
-
On the representations of continuous functions of many variables by superpositions of continuous functions of one variable and addition
-
A. N. Kolmogorov, "On the representations of continuous functions of many variables by superpositions of continuous functions of one variable and addition," Dokl. Akade. Nauk USSR, vol. 114, no. 5, pp. 953-956, 1957.
-
(1957)
Dokl. Akade. Nauk USSR
, vol.114
, Issue.5
, pp. 953-956
-
-
Kolmogorov, A.N.1
-
7
-
-
0030198795
-
A numerical implementation of Kolmogorov's theorems
-
D. A. Sprecher, "A numerical implementation of Kolmogorov's theorems," Neural Networks, vol. 9, no. 5, pp. 765-771, 1996.
-
(1996)
Neural Networks
, vol.9
, Issue.5
, pp. 765-771
-
-
Sprecher, D.A.1
-
8
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function theory
-
May
-
A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function theory," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, May 1993.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 930-945
-
-
Barron, A.R.1
-
9
-
-
0025399567
-
Identification and control of dynamical systems using neural networks
-
Mar.
-
K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Mar. 1990.
-
(1990)
IEEE Trans. Neural Networks
, vol.1
, pp. 4-27
-
-
Narendra, K.S.1
Parthasarathy, K.2
-
10
-
-
0026895542
-
The gamma model - A new neural-net model for temporal processing
-
B. de Vries and J. C. Principe, "The gamma model - A new neural-net model for temporal processing," Neural Networks, vol. 5, pp. 565-576, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 565-576
-
-
De Vries, B.1
Principe, J.C.2
-
11
-
-
84935413199
-
Modular construction of time-delay neural networks for speech recognition
-
A. Waibel, "Modular construction of time-delay neural networks for speech recognition," Neural Computa., vol. 1, no. 1, pp. 39-46, 1989.
-
(1989)
Neural Computa.
, vol.1
, Issue.1
, pp. 39-46
-
-
Waibel, A.1
-
13
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," Bull. Math. Biophys., vol. 9, pp. 115-133, 1943.
-
(1943)
Bull. Math. Biophys.
, vol.9
, pp. 115-133
-
-
McCulloch, W.S.1
Pitts, W.2
-
14
-
-
11244344305
-
Computational capabiliites of recurrent NARX neural networks
-
to be published Also, Univ. Maryland, College Park, MD, Tech. Reps. UMIACS-TR-95-78 and CS-TR-3500.
-
H. T. Siegelmann, B. G. Horne, and C. L. Giles, "Computational capabiliites of recurrent NARX neural networks," to be published in IEEE Trans. Syst., Man, Cybern. Also, Univ. Maryland, College Park, MD, Tech. Reps. UMIACS-TR-95-78 and CS-TR-3500.
-
IEEE Trans. Syst., Man, Cybern.
-
-
Siegelmann, H.T.1
Horne, B.G.2
Giles, C.L.3
-
15
-
-
0029255891
-
On the computational power of neural networks
-
H. T. Siegelmann and E. D. Sontag, "On the computational power of neural networks," J. Comput. Syst. Sci., vol. 50, no. 1, pp. 132-150, 1995.
-
(1995)
J. Comput. Syst. Sci.
, vol.50
, Issue.1
, pp. 132-150
-
-
Siegelmann, H.T.1
Sontag, E.D.2
-
16
-
-
0026206029
-
Structure theorems for nonlinear systems
-
See also the errata in vol. 3, p. 101, 1992
-
I. W. Sandberg, "Structure theorems for nonlinear systems," Multidimensional Syst. Signal Processing, vol. 2, pp. 267-286, 1991. (See also the errata in vol. 3, p. 101, 1992.)
-
(1991)
Multidimensional Syst. Signal Processing
, vol.2
, pp. 267-286
-
-
Sandberg, I.W.1
-
17
-
-
0342580089
-
Multidimensional nonlinear systems and structure theorems
-
_, "Multidimensional nonlinear systems and structure theorems," J. Circuits, Syst., and Computers, vol. 2, no. 4, pp. 383-388, 1992.
-
(1992)
J. Circuits, Syst., and Computers
, vol.2
, Issue.4
, pp. 383-388
-
-
-
18
-
-
0030393455
-
Network approximation of input-output maps and functionals
-
I. W. Sandberg and L. Xu, "Network approximation of input-output maps and functionals," J. Circuits, Syst., Signal Processing, vol. 15, no. 6, pp. 711-725, 1996.
-
(1996)
J. Circuits, Syst., Signal Processing
, vol.15
, Issue.6
, pp. 711-725
-
-
Sandberg, I.W.1
Xu, L.2
-
19
-
-
0027698748
-
Approximation of continuous functionals by neural networks with application to dynamical systems
-
Nov.
-
T. Chen and H. Chen, "Approximation of continuous functionals by neural networks with application to dynamical systems," IEEE Trans. Neural Networks, vol. 4, pp. 910-918, Nov. 1993.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 910-918
-
-
Chen, T.1
Chen, H.2
-
20
-
-
0029343809
-
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
-
July
-
_, "Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems," IEEE Trans. Neural Networks, vol. 6, pp. 918-928, July 1995.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 918-928
-
-
-
21
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Mar.
-
Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks, vol. 5, pp. 157-166, Mar. 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
22
-
-
33646241633
-
Learning long-term dependencies in NARX recurrent neural networks
-
Nov.
-
T. Lin, B. G. Horne, P. Tiňo, and C. L. Giles, "Learning long-term dependencies in NARX recurrent neural networks," IEEE Trans. Neural Networks, vol. 7, pp. 1329-1338, Nov. 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 1329-1338
-
-
Lin, T.1
Horne, B.G.2
Tiňo, P.3
Giles, C.L.4
-
23
-
-
0030242097
-
Input-output HMM's for sequence processing
-
Sept.
-
Y. Bengio and P. Frasconi, "Input-output HMM's for sequence processing," IEEE Trans. Neural Networks, vol. 7, pp. 1231-1248, Sept. 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 1231-1248
-
-
Bengio, Y.1
Frasconi, P.2
-
25
-
-
0031171347
-
Habituation based neural networks for spatio-temporal classification
-
B. W. Stiles and J. Ghosh, "Habituation based neural networks for spatio-temporal classification," Neurocomputing, vol. 15, no. 3/4, ppl 273-307, 1997.
-
(1997)
Neurocomputing
, vol.15
, Issue.3-4
, pp. 273-307
-
-
Stiles, B.W.1
Ghosh, J.2
-
26
-
-
0029765285
-
Some limitations of linear memory architectures for signal processing
-
Venice, Italy
-
_, "Some limitations of linear memory architectures for signal processing," in Proc. 1996 Int. Workshop on Neural Networks for Identification, Contr., Robot., Signal/Image Processing, Venice, Italy, 1996, pp. 102-110.
-
(1996)
Proc. 1996 Int. Workshop on Neural Networks for Identification, Contr., Robot., Signal/Image Processing
, pp. 102-110
-
-
-
27
-
-
84866222705
-
-
Center for Vision and Image Sci., Univ. Texas Austin, Tech. Rep. UT-CVIS-TR-96-004, under "technical reports."
-
_, "Nonlinear memory functions for modeling discrete-time systems," Center for Vision and Image Sci., Univ. Texas Austin, Tech. Rep. UT-CVIS-TR-96-004, available http://www.lans.ece.utexas.edu under "technical reports."
-
Nonlinear Memory Functions for Modeling Discrete-time Systems
-
-
-
28
-
-
0001961758
-
A generalized Weierstrass approximation theorem
-
in R. C. Buck, Ed., The Math. Assoc. Amer.
-
M. H. Stone, "A generalized Weierstrass approximation theorem," in R. C. Buck, Ed., Studies in Modern Analysis. The Math. Assoc. Amer., 1962.
-
(1962)
Studies in Modern Analysis
-
-
Stone, M.H.1
-
29
-
-
0031194380
-
Uniform approximation and gamma networks
-
I. W. Sandberg and L. Xu, "Uniform approximation and gamma networks," Neural Networks, vol. 10, no. 5, pp. 781-784, 1997.
-
(1997)
Neural Networks
, vol.10
, Issue.5
, pp. 781-784
-
-
Sandberg, I.W.1
Xu, L.2
-
30
-
-
0025106113
-
Neural response to auditory patterns
-
D. Robin, P. Abbas, and L. Hug, "Neural response to auditory patterns," J. Acoust. Soc. Amer., vol. 87, no. 4, pp. 1673-1682, 1990.
-
(1990)
J. Acoust. Soc. Amer.
, vol.87
, Issue.4
, pp. 1673-1682
-
-
Robin, D.1
Abbas, P.2
Hug, L.3
-
31
-
-
0013578505
-
Mathematical model of cellular and molecular processes contributing to associative and nonassociative learning in Aplysia
-
J. H. Byrne and W. O. Berry, Eds. San Diego, CA: Academic
-
J. H. Byrne and K. J. Gingrich, "Mathematical model of cellular and molecular processes contributing to associative and nonassociative learning in Aplysia," in Neural Models of Plasticity, J. H. Byrne and W. O. Berry, Eds. San Diego, CA: Academic, 1989, pp. 58-70.
-
(1989)
Neural Models of Plasticity
, pp. 58-70
-
-
Byrne, J.H.1
Gingrich, K.J.2
-
32
-
-
0026939766
-
A neural-network-based hybrid system for detection, characterization, and classification of short-duration oceanic signals
-
Oct.
-
J. Ghosh, L. Deuser, and S. Beck, "A neural-network-based hybrid system for detection, characterization, and classification of short-duration oceanic signals," IEEE J. Oceanic Eng., vol. 17, pp. 351-363, Oct. 1992.
-
(1992)
IEEE J. Oceanic Eng.
, vol.17
, pp. 351-363
-
-
Ghosh, J.1
Deuser, L.2
Beck, S.3
-
33
-
-
0029231788
-
A habituation based neural network for spatiotemporal classification
-
Cambridge, MA, Sept.
-
B. Stiles and J. Ghosh, "A habituation based neural network for spatiotemporal classification," in Neural Networks for Signal Processing V, Proc. 1995 IEEE Workshop, Cambridge, MA, Sept. 1995, pp. 135-144.
-
(1995)
Neural Networks for Signal Processing V, Proc. 1995 IEEE Workshop
, pp. 135-144
-
-
Stiles, B.1
Ghosh, J.2
-
34
-
-
0001184176
-
Recurrent backpropagation and the dynamical approach to adaptive neural computation
-
F. J. Pineda, "Recurrent backpropagation and the dynamical approach to adaptive neural computation," Neural Computa., vol. 1, no. 2, pp. 161-172, 1989.
-
(1989)
Neural Computa.
, vol.1
, Issue.2
, pp. 161-172
-
-
Pineda, F.J.1
|