메뉴 건너뛰기




Volumn 8, Issue 6, 1997, Pages 1397-1409

Complete memory structures for approximating nonlinear discrete-time mappings

Author keywords

Approximation theory; Discrete time systems; Functional analysis; Modeling; Multidimensional systems; Neural networks; Nonlinear systems; Universal approximators

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTER SIMULATION; MATHEMATICAL MODELS; NEURAL NETWORKS; NONLINEAR SYSTEMS;

EID: 0031269630     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.641463     Document Type: Article
Times cited : (6)

References (34)
  • 1
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function
    • G. Cybenko, "Approximations by superpositions of a sigmoidal function," Math. Contr., Signals, Syst., vol. 2, pp. 303-314, 1989.
    • (1989) Math. Contr., Signals, Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Summer
    • J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Computa., vol. 3, no. 2, pp. 246-257, Summer 1991.
    • (1991) Neural Computa. , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 3
    • 0029304837 scopus 로고
    • Ridge polynomial networks
    • May
    • Y. Shin and J. Ghosh, "Ridge polynomial networks," IEEE Trans. Neural Networks, vol. 6, pp. 610-622, May 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 610-622
    • Shin, Y.1    Ghosh, J.2
  • 4
    • 33747710829 scopus 로고
    • Computer and Vision Res. Center, Univ. Texas, Austin, Tech. Rep. TR-92-12-87, May
    • _, "Function approximation using higher-order connectionist networks," Computer and Vision Res. Center, Univ. Texas, Austin, Tech. Rep. TR-92-12-87, May 1992.
    • (1992) Function Approximation Using Higher-order Connectionist Networks
  • 6
    • 0001321136 scopus 로고
    • On the representations of continuous functions of many variables by superpositions of continuous functions of one variable and addition
    • A. N. Kolmogorov, "On the representations of continuous functions of many variables by superpositions of continuous functions of one variable and addition," Dokl. Akade. Nauk USSR, vol. 114, no. 5, pp. 953-956, 1957.
    • (1957) Dokl. Akade. Nauk USSR , vol.114 , Issue.5 , pp. 953-956
    • Kolmogorov, A.N.1
  • 7
    • 0030198795 scopus 로고    scopus 로고
    • A numerical implementation of Kolmogorov's theorems
    • D. A. Sprecher, "A numerical implementation of Kolmogorov's theorems," Neural Networks, vol. 9, no. 5, pp. 765-771, 1996.
    • (1996) Neural Networks , vol.9 , Issue.5 , pp. 765-771
    • Sprecher, D.A.1
  • 8
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function theory
    • May
    • A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function theory," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 9
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Mar.
    • K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Mar. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 10
    • 0026895542 scopus 로고
    • The gamma model - A new neural-net model for temporal processing
    • B. de Vries and J. C. Principe, "The gamma model - A new neural-net model for temporal processing," Neural Networks, vol. 5, pp. 565-576, 1992.
    • (1992) Neural Networks , vol.5 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 11
    • 84935413199 scopus 로고
    • Modular construction of time-delay neural networks for speech recognition
    • A. Waibel, "Modular construction of time-delay neural networks for speech recognition," Neural Computa., vol. 1, no. 1, pp. 39-46, 1989.
    • (1989) Neural Computa. , vol.1 , Issue.1 , pp. 39-46
    • Waibel, A.1
  • 13
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," Bull. Math. Biophys., vol. 9, pp. 115-133, 1943.
    • (1943) Bull. Math. Biophys. , vol.9 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 14
    • 11244344305 scopus 로고    scopus 로고
    • Computational capabiliites of recurrent NARX neural networks
    • to be published Also, Univ. Maryland, College Park, MD, Tech. Reps. UMIACS-TR-95-78 and CS-TR-3500.
    • H. T. Siegelmann, B. G. Horne, and C. L. Giles, "Computational capabiliites of recurrent NARX neural networks," to be published in IEEE Trans. Syst., Man, Cybern. Also, Univ. Maryland, College Park, MD, Tech. Reps. UMIACS-TR-95-78 and CS-TR-3500.
    • IEEE Trans. Syst., Man, Cybern.
    • Siegelmann, H.T.1    Horne, B.G.2    Giles, C.L.3
  • 15
    • 0029255891 scopus 로고
    • On the computational power of neural networks
    • H. T. Siegelmann and E. D. Sontag, "On the computational power of neural networks," J. Comput. Syst. Sci., vol. 50, no. 1, pp. 132-150, 1995.
    • (1995) J. Comput. Syst. Sci. , vol.50 , Issue.1 , pp. 132-150
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 16
    • 0026206029 scopus 로고
    • Structure theorems for nonlinear systems
    • See also the errata in vol. 3, p. 101, 1992
    • I. W. Sandberg, "Structure theorems for nonlinear systems," Multidimensional Syst. Signal Processing, vol. 2, pp. 267-286, 1991. (See also the errata in vol. 3, p. 101, 1992.)
    • (1991) Multidimensional Syst. Signal Processing , vol.2 , pp. 267-286
    • Sandberg, I.W.1
  • 17
    • 0342580089 scopus 로고
    • Multidimensional nonlinear systems and structure theorems
    • _, "Multidimensional nonlinear systems and structure theorems," J. Circuits, Syst., and Computers, vol. 2, no. 4, pp. 383-388, 1992.
    • (1992) J. Circuits, Syst., and Computers , vol.2 , Issue.4 , pp. 383-388
  • 18
    • 0030393455 scopus 로고    scopus 로고
    • Network approximation of input-output maps and functionals
    • I. W. Sandberg and L. Xu, "Network approximation of input-output maps and functionals," J. Circuits, Syst., Signal Processing, vol. 15, no. 6, pp. 711-725, 1996.
    • (1996) J. Circuits, Syst., Signal Processing , vol.15 , Issue.6 , pp. 711-725
    • Sandberg, I.W.1    Xu, L.2
  • 19
    • 0027698748 scopus 로고
    • Approximation of continuous functionals by neural networks with application to dynamical systems
    • Nov.
    • T. Chen and H. Chen, "Approximation of continuous functionals by neural networks with application to dynamical systems," IEEE Trans. Neural Networks, vol. 4, pp. 910-918, Nov. 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 910-918
    • Chen, T.1    Chen, H.2
  • 20
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
    • July
    • _, "Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems," IEEE Trans. Neural Networks, vol. 6, pp. 918-928, July 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 918-928
  • 21
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar.
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks, vol. 5, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 22
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • Nov.
    • T. Lin, B. G. Horne, P. Tiňo, and C. L. Giles, "Learning long-term dependencies in NARX recurrent neural networks," IEEE Trans. Neural Networks, vol. 7, pp. 1329-1338, Nov. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tiňo, P.3    Giles, C.L.4
  • 23
    • 0030242097 scopus 로고    scopus 로고
    • Input-output HMM's for sequence processing
    • Sept.
    • Y. Bengio and P. Frasconi, "Input-output HMM's for sequence processing," IEEE Trans. Neural Networks, vol. 7, pp. 1231-1248, Sept. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1231-1248
    • Bengio, Y.1    Frasconi, P.2
  • 25
    • 0031171347 scopus 로고    scopus 로고
    • Habituation based neural networks for spatio-temporal classification
    • B. W. Stiles and J. Ghosh, "Habituation based neural networks for spatio-temporal classification," Neurocomputing, vol. 15, no. 3/4, ppl 273-307, 1997.
    • (1997) Neurocomputing , vol.15 , Issue.3-4 , pp. 273-307
    • Stiles, B.W.1    Ghosh, J.2
  • 27
    • 84866222705 scopus 로고    scopus 로고
    • Center for Vision and Image Sci., Univ. Texas Austin, Tech. Rep. UT-CVIS-TR-96-004, under "technical reports."
    • _, "Nonlinear memory functions for modeling discrete-time systems," Center for Vision and Image Sci., Univ. Texas Austin, Tech. Rep. UT-CVIS-TR-96-004, available http://www.lans.ece.utexas.edu under "technical reports."
    • Nonlinear Memory Functions for Modeling Discrete-time Systems
  • 28
    • 0001961758 scopus 로고
    • A generalized Weierstrass approximation theorem
    • in R. C. Buck, Ed., The Math. Assoc. Amer.
    • M. H. Stone, "A generalized Weierstrass approximation theorem," in R. C. Buck, Ed., Studies in Modern Analysis. The Math. Assoc. Amer., 1962.
    • (1962) Studies in Modern Analysis
    • Stone, M.H.1
  • 29
    • 0031194380 scopus 로고    scopus 로고
    • Uniform approximation and gamma networks
    • I. W. Sandberg and L. Xu, "Uniform approximation and gamma networks," Neural Networks, vol. 10, no. 5, pp. 781-784, 1997.
    • (1997) Neural Networks , vol.10 , Issue.5 , pp. 781-784
    • Sandberg, I.W.1    Xu, L.2
  • 30
    • 0025106113 scopus 로고
    • Neural response to auditory patterns
    • D. Robin, P. Abbas, and L. Hug, "Neural response to auditory patterns," J. Acoust. Soc. Amer., vol. 87, no. 4, pp. 1673-1682, 1990.
    • (1990) J. Acoust. Soc. Amer. , vol.87 , Issue.4 , pp. 1673-1682
    • Robin, D.1    Abbas, P.2    Hug, L.3
  • 31
    • 0013578505 scopus 로고
    • Mathematical model of cellular and molecular processes contributing to associative and nonassociative learning in Aplysia
    • J. H. Byrne and W. O. Berry, Eds. San Diego, CA: Academic
    • J. H. Byrne and K. J. Gingrich, "Mathematical model of cellular and molecular processes contributing to associative and nonassociative learning in Aplysia," in Neural Models of Plasticity, J. H. Byrne and W. O. Berry, Eds. San Diego, CA: Academic, 1989, pp. 58-70.
    • (1989) Neural Models of Plasticity , pp. 58-70
    • Byrne, J.H.1    Gingrich, K.J.2
  • 32
    • 0026939766 scopus 로고
    • A neural-network-based hybrid system for detection, characterization, and classification of short-duration oceanic signals
    • Oct.
    • J. Ghosh, L. Deuser, and S. Beck, "A neural-network-based hybrid system for detection, characterization, and classification of short-duration oceanic signals," IEEE J. Oceanic Eng., vol. 17, pp. 351-363, Oct. 1992.
    • (1992) IEEE J. Oceanic Eng. , vol.17 , pp. 351-363
    • Ghosh, J.1    Deuser, L.2    Beck, S.3
  • 34
    • 0001184176 scopus 로고
    • Recurrent backpropagation and the dynamical approach to adaptive neural computation
    • F. J. Pineda, "Recurrent backpropagation and the dynamical approach to adaptive neural computation," Neural Computa., vol. 1, no. 2, pp. 161-172, 1989.
    • (1989) Neural Computa. , vol.1 , Issue.2 , pp. 161-172
    • Pineda, F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.