메뉴 건너뛰기




Volumn 10, Issue 4, 1997, Pages 705-720

Linsker-type Hebbian learning: A qualitative analysis on the parameter space

Author keywords

Afferent receptive field; Limited function; Linsker's developmental model; Network self organization; Ontogenesis of primary visual system; Parameter space; Synaptic arbor density; Unsupervised Hebbian learning

Indexed keywords

LINSKER-TYPE HEBBIAN LEARNING; PARAMETER SPACE; SYNAPTIC ARBOR DENSITY;

EID: 0031171241     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(97)00020-8     Document Type: Article
Times cited : (5)

References (22)
  • 1
    • 0012666573 scopus 로고
    • Distinctive features, categorical perception, and probability learning: Some applications of a neural model
    • Anderson, J.A., Silverstein, J.W., Ritz, S.A., & Jones, R.S. (1977). Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychological Review, 84, 413-451.
    • (1977) Psychological Review , vol.84 , pp. 413-451
    • Anderson, J.A.1    Silverstein, J.W.2    Ritz, S.A.3    Jones, R.S.4
  • 2
    • 0020970741 scopus 로고
    • Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
    • Cohen, M.A., & Grossberg, S. (1983). Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 815-826.
    • (1983) IEEE Transactions on Systems, Man, and Cybernetics , vol.SMC-13 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 3
    • 0345192217 scopus 로고
    • Perturbing Hebbian rules
    • J. E. Moody, S. J. Hanson & R. P. Lippman (Eds.), San Mateo, CA: Morgan Kaufmann
    • Dayan, P. S., & Goodhill, G. J. (1992). Perturbing Hebbian rules. In J. E. Moody, S. J. Hanson & R. P. Lippman (Eds.), Advances in neural information processing systems, 4 (pp. 19-26). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 19-26
    • Dayan, P.S.1    Goodhill, G.J.2
  • 4
    • 0029295245 scopus 로고
    • Models of orientation and ocular dominance columns in the visual cortex: A critical comparison
    • Erwin, E., Obermayer, K., & Schulten, K. (1994). Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Computation, 7, 425-468.
    • (1994) Neural Computation , vol.7 , pp. 425-468
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 5
    • 0030628345 scopus 로고    scopus 로고
    • Lyapunov function for neural nets with nondifferentiable input-output characteristics
    • Feng, J. (1997). Lyapunov function for neural nets with nondifferentiable input-output characteristics. Neural Computation, 9, 45-51.
    • (1997) Neural Computation , vol.9 , pp. 45-51
    • Feng, J.1
  • 6
    • 0005863692 scopus 로고    scopus 로고
    • Qualitative behavior of some simple networks
    • Feng, J., & Hadeler, K.P. (1996). Qualitative behavior of some simple networks. J. Phys.A, 29, 5019-5033.
    • (1996) J. Phys.A , vol.29 , pp. 5019-5033
    • Feng, J.1    Hadeler, K.P.2
  • 7
    • 0001148797 scopus 로고    scopus 로고
    • On neurodynamics with limiter function and Linsker's developmental model
    • Feng, J., Pan, H., & Roychowdhury, V.P. (1996). On neurodynamics with limiter function and Linsker's developmental model. Neural Computation, 8(5), 1003-1019.
    • (1996) Neural Computation , vol.8 , Issue.5 , pp. 1003-1019
    • Feng, J.1    Pan, H.2    Roychowdhury, V.P.3
  • 8
    • 0002648675 scopus 로고
    • The 'Brain-State-in-a-Box' neural model is a gradient descent algorithm
    • Golden, R.M. (1986). The 'Brain-State-in-a-Box' neural model is a gradient descent algorithm. Journal of Mathematical Psychology, 30, 73-80.
    • (1986) Journal of Mathematical Psychology , vol.30 , pp. 73-80
    • Golden, R.M.1
  • 9
    • 38249001635 scopus 로고
    • Stability and optimization analysis of the generalized Brain-State-in-a-Box neural network model
    • Golden, R.M. (1993). Stability and optimization analysis of the generalized Brain-State-in-a-Box neural network model. Journal of Mathematical Psychology, 37, 282-298.
    • (1993) Journal of Mathematical Psychology , vol.37 , pp. 282-298
    • Golden, R.M.1
  • 10
    • 0024134569 scopus 로고
    • Equilibria of the Brain-State-in-a-Box (BSB) neural model
    • Greenberg, H.J. (1988). Equilibria of the Brain-State-in-a-Box (BSB) neural model. Neural Networks, 1, 323-324.
    • (1988) Neural Networks , vol.1 , pp. 323-324
    • Greenberg, H.J.1
  • 11
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanisms, and architectures
    • Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1, 17-61.
    • (1988) Neural Networks , vol.1 , pp. 17-61
    • Grossberg, S.1
  • 12
    • 0026624070 scopus 로고
    • Dynamical analysis of the Brain-State-in-a-Box (BSB) neural models
    • Hui, S., & Zak, S.H. (1992). Dynamical analysis of the Brain-State-in-a-Box (BSB) neural models. IEEE Transactions on Neural Networks, 3(1), 86-94.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.1 , pp. 86-94
    • Hui, S.1    Zak, S.H.2
  • 13
    • 0003346575 scopus 로고
    • From basic network principle to neural architecture (series)
    • Linsker, R. (1986). From basic network principle to neural architecture (series). Proc. Natl Acad. Sci. USA, 83, 7508-7512, 8390-8394, 8779-8783.
    • (1986) Proc. Natl Acad. Sci. USA , vol.83 , pp. 7508-7512
    • Linsker, R.1
  • 14
    • 0042940775 scopus 로고
    • Development of feature-analyzing cells and their columnar organization in a layered self-adaptive network
    • R. Cotterill (Ed.), Cambridge: Cambridge University Press
    • Linsker, R. (1988a). Development of feature-analyzing cells and their columnar organization in a layered self-adaptive network. In R. Cotterill (Ed.), Computer simulation in brain science (pp. 416-431). Cambridge: Cambridge University Press.
    • (1988) Computer Simulation in Brain Science , pp. 416-431
    • Linsker, R.1
  • 15
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3), 105-117.
    • (1988) Computer , vol.21 , Issue.3 , pp. 105-117
    • Linsker, R.1
  • 16
    • 0000912463 scopus 로고
    • Analysis of Linsker's application of Hebbian rules to linear networks
    • MacKay, D., & Miller, K.D. (1990). Analysis of Linsker's application of Hebbian rules to linear networks. Network: Computation in Neural Systems, 1, 257-297.
    • (1990) Network: Computation in Neural Systems , vol.1 , pp. 257-297
    • MacKay, D.1    Miller, K.D.2
  • 17
    • 0000962148 scopus 로고
    • Analysis of Linsker's simulations of Hebbian rules
    • MacKay, D., & Miller, K.D. (1990). Analysis of Linsker's simulations of Hebbian rules. Neural Computation, 2, 173-187.
    • (1990) Neural Computation , vol.2 , pp. 173-187
    • MacKay, D.1    Miller, K.D.2
  • 18
    • 0001834698 scopus 로고
    • Correlation-based mechanisms of neural development
    • M. A. Gluck and D. E. Rumelhart (Eds.), Hillsdale, NJ: Lawrence Erlbaum
    • Miller, K. D. (1990a). Correlation-based mechanisms of neural development. In M. A. Gluck and D. E. Rumelhart (Eds.), Neurocience and Connectionist Theory (pp. 267-353). Hillsdale, NJ: Lawrence Erlbaum.
    • (1990) Neurocience and Connectionist Theory , pp. 267-353
    • Miller, K.D.1
  • 19
    • 0000600702 scopus 로고
    • Derivation of linear Hebbian equations from a nonlinear Hebbian model of synaptic plasticity
    • Miller, K.D. (1990). Derivation of linear Hebbian equations from a nonlinear Hebbian model of synaptic plasticity. Neural Computation, 2, 321-333.
    • (1990) Neural Computation , vol.2 , pp. 321-333
    • Miller, K.D.1
  • 20
    • 0028157133 scopus 로고
    • A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between On- and OFF- center inputs
    • Miller, K.D. (1994). A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between On- and OFF- center inputs. J. Neuroscience, 14(1), 409-441.
    • (1994) J. Neuroscience , vol.14 , Issue.1 , pp. 409-441
    • Miller, K.D.1
  • 21
    • 0002098230 scopus 로고    scopus 로고
    • Receptive fields and maps in the visual cortex: Models of ocular dominance and orientation columns
    • E. Domany, J. L. van Hemmen and K. Schulten (Eds.), New York: Springer-Verlag
    • Miller, K. D. (1996). Receptive fields and maps in the visual cortex: Models of ocular dominance and orientation columns. In E. Domany, J. L. van Hemmen and K. Schulten (Eds.), Models of neural networks 111 (pp. 55-78). New York: Springer-Verlag.
    • (1996) Models of Neural Networks , vol.111 , pp. 55-78
    • Miller, K.D.1
  • 22
    • 0002727735 scopus 로고
    • The role of constraints in Hebbian learning
    • Miller, K.D., & MacKay, D.J.C. (1994). The role of constraints in Hebbian learning. Neural Computation. 6, 100-126.
    • (1994) Neural Computation , vol.6 , pp. 100-126
    • Miller, K.D.1    MacKay, D.J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.