-
2
-
-
0011173829
-
-
R. Rappuoli, V. Scarlato, B. Arico, Eds. Landes, Austin, TX
-
S. I. Miller, in Signal Transduction and Bacterial Virulence, R. Rappuoli, V. Scarlato, B. Arico, Eds. (Landes, Austin, TX, 1995), pp. 61-77.
-
(1995)
Signal Transduction and Bacterial Virulence
, pp. 61-77
-
-
Miller, S.I.1
-
6
-
-
0027201144
-
-
K. L. Roland, L. E. Martin, C. R. Esther, J. K. Spitznagel, ibid. 175, 4154 (1993).
-
(1993)
J. Bacteriol.
, vol.175
, pp. 4154
-
-
Roland, K.L.1
Martin, L.E.2
Esther, C.R.3
Spitznagel, J.K.4
-
8
-
-
0026498184
-
-
C. M. Alpuche-Aranda, J. A. Swanson, W. P. Loomis, S. I. Miller, Proc. Natl. Acad. Sci. U.S.A. 89, 10079 (1992).
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 10079
-
-
Alpuche-Aranda, C.M.1
Swanson, J.A.2
Loomis, W.P.3
Miller, S.I.4
-
10
-
-
0001045273
-
-
D. C. Morrison and J. L. Ryan, Eds. CRC Press, Boca Raton, FL
-
H. Takada and S. Kotani, in Bacterial Endotoxic Lipopolysaccharides, vol. 1, Molecular Biochemistry and Cellular Biology, D. C. Morrison and J. L. Ryan, Eds. (CRC Press, Boca Raton, FL, 1992), pp. 107-130.
-
(1992)
Bacterial Endotoxic Lipopolysaccharides, Vol. 1, Molecular Biochemistry and Cellular Biology
, vol.1
, pp. 107-130
-
-
Takada, H.1
Kotani, S.2
-
11
-
-
0020590029
-
-
2+-ethanol precipitation procedure for isolation of LPS was chosen because it is effective in extracting both smooth and rough LPS with a high degree of purity [R. P. Darveau and R. E. Hancock, J. Bacteriol. 155, 831 (1983)].
-
(1983)
J. Bacteriol.
, vol.155
, pp. 831
-
-
Darveau, R.P.1
Hancock, R.E.2
-
12
-
-
0020326777
-
-
- LPS contained different amounts of O-antigen substitution relative to wild-type LPS. Similar results were also obtained when whole-cell rhamnose/3-OH C14:0 ratios were examined [K. Bryn and E. Jantzen, J. Chromatogr. 240, 405 (1982)].
-
(1982)
J. Chromatogr.
, vol.240
, pp. 405
-
-
Bryn, K.1
Jantzen, E.2
-
13
-
-
0024287478
-
-
Lipid A was made by hydrolysis of LPS in 1% SDS at pH 4.5 [M. Caroff, A. Tacken, L. Szabo, Carbohydr. Res. 175, 273 (1988)]. The presence of SDS is critical to obtain complete hydrolysis of LPS under less acidic pH conditions, such that unwanted hydrolysis of lipid A ester bonds is minimized.
-
(1988)
Carbohydr. Res.
, vol.175
, pp. 273
-
-
Caroff, M.1
Tacken, A.2
Szabo, L.3
-
14
-
-
0024289037
-
-
M. Karas and F. Hillenkamp, Anal. Chem. 60, 2299 (1988); M. Karas, D. Bachman, U. Bahr, F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes 78, 53 (1987).
-
(1988)
Anal. Chem.
, vol.60
, pp. 2299
-
-
Karas, M.1
Hillenkamp, F.2
-
15
-
-
24644477568
-
-
M. Karas and F. Hillenkamp, Anal. Chem. 60, 2299 (1988); M. Karas, D. Bachman, U. Bahr, F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes 78, 53 (1987).
-
(1987)
Int. J. Mass Spectrom. Ion Processes
, vol.78
, pp. 53
-
-
Karas, M.1
Bachman, D.2
Bahr, U.3
Hillenkamp, F.4
-
16
-
-
0003018911
-
-
J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Mass Spectrom. Rev. 9, 37 (1990); Science 246, 64 (1989); M. Dole, H. L. Cox, J. Gieniec, Adv. Chem. Ser. 125, 73 (1971).
-
(1990)
Mass Spectrom. Rev.
, vol.9
, pp. 37
-
-
Fenn, J.B.1
Mann, M.2
Meng, C.K.3
Wong, S.F.4
Whitehouse, C.M.5
-
17
-
-
0003018911
-
-
J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Mass Spectrom. Rev. 9, 37 (1990); Science 246, 64 (1989); M. Dole, H. L. Cox, J. Gieniec, Adv. Chem. Ser. 125, 73 (1971).
-
(1989)
Science
, vol.246
, pp. 64
-
-
-
18
-
-
0003018911
-
-
J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Mass Spectrom. Rev. 9, 37 (1990); Science 246, 64 (1989); M. Dole, H. L. Cox, J. Gieniec, Adv. Chem. Ser. 125, 73 (1971).
-
(1971)
Adv. Chem. Ser.
, vol.125
, pp. 73
-
-
Dole, M.1
Cox, H.L.2
Gieniec, J.3
-
19
-
-
0002036019
-
-
G. R. Waller, Ed. Wiley, New York, and references therein
-
See G. Odham and E. Stenhagen, in Biochemical Applications of Mass Spectrometry, G. R. Waller, Ed. (Wiley, New York, 1972), pp. 211-228, and references therein; N. J. Jensen and M. L. Gross, Mass Spectram. Rev. 6, 497 (1987), and references therein.
-
(1972)
Biochemical Applications of Mass Spectrometry
, pp. 211-228
-
-
Odham, G.1
Stenhagen, E.2
-
20
-
-
84994929780
-
-
and references therein
-
See G. Odham and E. Stenhagen, in Biochemical Applications of Mass Spectrometry, G. R. Waller, Ed. (Wiley, New York, 1972), pp. 211-228, and references therein; N. J. Jensen and M. L. Gross, Mass Spectram. Rev. 6, 497 (1987), and references therein.
-
(1987)
Mass Spectram. Rev.
, vol.6
, pp. 497
-
-
Jensen, N.J.1
Gross, M.L.2
-
22
-
-
0019855368
-
-
M. Vaara, J. Bacteriol. 148, 426 (1981); K. Nummila, I. Kilpelainen, U. Zahringer, M. Vaara, I. M. Helander, Mol. Microbiol. 16, 271 (1995); I. M. Helander, I. Kilpelainen, M. Vaara, ibid. 11, 481 (1994).
-
(1981)
J. Bacteriol.
, vol.148
, pp. 426
-
-
Vaara, M.1
-
23
-
-
0029010091
-
-
M. Vaara, J. Bacteriol. 148, 426 (1981); K. Nummila, I. Kilpelainen, U. Zahringer, M. Vaara, I. M. Helander, Mol. Microbiol. 16, 271 (1995); I. M. Helander, I. Kilpelainen, M. Vaara, ibid. 11, 481 (1994).
-
(1995)
Mol. Microbiol.
, vol.16
, pp. 271
-
-
Nummila, K.1
Kilpelainen, I.2
Zahringer, U.3
Vaara, M.4
Helander, I.M.5
-
24
-
-
0028263473
-
-
M. Vaara, J. Bacteriol. 148, 426 (1981); K. Nummila, I. Kilpelainen, U. Zahringer, M. Vaara, I. M. Helander, Mol. Microbiol. 16, 271 (1995); I. M. Helander, I. Kilpelainen, M. Vaara, ibid. 11, 481 (1994).
-
(1994)
Mol. Microbiol.
, vol.11
, pp. 481
-
-
Helander, I.M.1
Kilpelainen, I.2
Vaara, M.3
-
26
-
-
0029788692
-
-
n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
-
(1996)
Methods Enzymol.
, vol.270
, pp. 552
-
-
Schwartz, J.C.1
Jardine, I.2
-
27
-
-
0023386279
-
-
n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
-
(1987)
Anal. Chem.
, vol.59
, pp. 1677
-
-
Louris, J.N.1
-
28
-
-
0031014649
-
-
n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
-
(1997)
Anal. Biochem.
, vol.244
, pp. 1
-
-
Jonscher, K.R.1
Yates III, J.R.2
-
29
-
-
0002785362
-
-
R. E. March and J. F. J. Todd, Eds. CRC Press, Boca Raton, FL
-
n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
-
(1995)
Practical Aspects of Ion Trap Mass Spectrometry, Vol. 3, Chemical, Environmental and Biomedical Applications
, vol.3
, pp. 4-26
-
-
Todd, J.F.J.1
-
30
-
-
1842376611
-
-
note
-
- (molecular anion) at m/z 323. The 3-phospho product was not stable and was observed to undergo a spontaneous net gain of two mass units, to m/z 325, followed by elimination of phosphate. Fragmentation of synthetic 2-phosphomyristate observed in the triple-quadrupole MS and ion trap did not support assigning such a side chain to the modified lipid A structure. However, a structure containing 4′ phosphate cannot be ruled out.
-
-
-
-
31
-
-
0030030428
-
-
J. E. Somerville, L. Cassiano, B. Bainbridge, M. D. Cunningham, R. P. Darveau, J. Clin. Invest. 97, 359 (1996); R. P. Darveau et al., Infect. Immun. 63, 1311 (1995).
-
(1996)
J. Clin. Invest.
, vol.97
, pp. 359
-
-
Somerville, J.E.1
Cassiano, L.2
Bainbridge, B.3
Cunningham, M.D.4
Darveau, R.P.5
-
32
-
-
0028902201
-
-
J. E. Somerville, L. Cassiano, B. Bainbridge, M. D. Cunningham, R. P. Darveau, J. Clin. Invest. 97, 359 (1996); R. P. Darveau et al., Infect. Immun. 63, 1311 (1995).
-
(1995)
Infect. Immun.
, vol.63
, pp. 1311
-
-
Darveau, R.P.1
-
33
-
-
0025166114
-
-
Two serum proteins are also involved in this process: LPS-binding protein (LBP) and either soluble or membrane-bound CD14 [S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, J. C. Mathison, Science 249, 1431 (1990); E. A. Frey et al., J. Exp. Med. 176, 1665 (1992); J. Pugin et al., Proc. Natl. Acad. Sci. U.S.A. 90, 2744 (1993)].
-
(1990)
Science
, vol.249
, pp. 1431
-
-
Wright, S.D.1
Ramos, R.A.2
Tobias, P.S.3
Ulevitch, R.J.4
Mathison, J.C.5
-
34
-
-
0026463120
-
-
Two serum proteins are also involved in this process: LPS-binding protein (LBP) and either soluble or membrane-bound CD14 [S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, J. C. Mathison, Science 249, 1431 (1990); E. A. Frey et al., J. Exp. Med. 176, 1665 (1992); J. Pugin et al., Proc. Natl. Acad. Sci. U.S.A. 90, 2744 (1993)].
-
(1992)
J. Exp. Med.
, vol.176
, pp. 1665
-
-
Frey, E.A.1
-
35
-
-
0027446922
-
-
Two serum proteins are also involved in this process: LPS-binding protein (LBP) and either soluble or membrane-bound CD14 [S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, J. C. Mathison, Science 249, 1431 (1990); E. A. Frey et al., J. Exp. Med. 176, 1665 (1992); J. Pugin et al., Proc. Natl. Acad. Sci. U.S.A. 90, 2744 (1993)].
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 2744
-
-
Pugin, J.1
-
36
-
-
0028980830
-
-
P. A. Sieling et al., Science 269, 227 (1995).
-
(1995)
Science
, vol.269
, pp. 227
-
-
Sieling, P.A.1
-
37
-
-
0024601077
-
-
P. I. Fields, E. A. Groisman, F. Heffron, ibid. 243, 1059 (1989); S. I. Miller, W. S. Pulkkinen, M. E. Selsted, J. J. Mekalanos, Infect. Immun. 58, 3706 (1990).
-
(1989)
Science
, vol.243
, pp. 1059
-
-
Fields, P.I.1
Groisman, E.A.2
Heffron, F.3
-
38
-
-
0025096413
-
-
P. I. Fields, E. A. Groisman, F. Heffron, ibid. 243, 1059 (1989); S. I. Miller, W. S. Pulkkinen, M. E. Selsted, J. J. Mekalanos, Infect. Immun. 58, 3706 (1990).
-
(1990)
Infect. Immun.
, vol.58
, pp. 3706
-
-
Miller, S.I.1
Pulkkinen, W.S.2
Selsted, M.E.3
Mekalanos, J.J.4
-
39
-
-
0028354341
-
-
For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
-
(1994)
Anal. Biochem.
, vol.218
, pp. 63
-
-
Chan, S.1
Reinhold, V.N.2
-
40
-
-
0027469424
-
-
For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
-
(1993)
Biol. Mass Spectrom.
, vol.22
, pp. 59
-
-
Harrata, A.K.1
Domelsmith, L.N.2
Cole, R.B.3
-
41
-
-
0021100280
-
-
For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
-
(1983)
J. Biol. Chem.
, vol.258
, pp. 12801
-
-
Takayama, K.1
Qureshi, N.2
Mascagni, P.3
-
42
-
-
0028354341
-
-
For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
-
J. Biol. Chem.
, pp. 12947
-
-
Qureshi, N.1
Takayama, K.2
Heller, D.3
Fenselau, C.4
-
43
-
-
0020367633
-
-
For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
-
(1982)
J. Biol. Chem.
, vol.257
, pp. 11808
-
-
Qureshi, N.1
Takayama, K.2
Ribi, E.3
-
44
-
-
0027255391
-
-
For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
-
(1993)
J. Bacteriol.
, vol.175
, pp. 5745
-
-
Raetz, C.R.H.1
-
45
-
-
1842326554
-
-
note
-
K. B. Lim and M. Hackett, data not shown. Both m/z 159 and 177 lost phosphate when fragmented in the ion trap.
-
-
-
-
46
-
-
1842325942
-
-
note
-
We thank K. A. Walsh and L. H. Ericsson for MALDITOF and triple-quadrupole mass spectrometers; J. R. Yates III for the ion trap; M. Sanders and W. Loyd for assistance with the ion trap experiments; W. N. Howald for the GC-MS analyses; F. Turecek and W. L. Nelson for reviewing the MS results; M. Gelb for suggesting the synthesis scheme in (21); and J. Kowalak, H. Wang, J. Somerville, J. Eng, A. R. Dongre, and E. Carmack for their assistance. Supported by NIH grant R01 Al30479 (S.I.M.) and the School of Pharmacy and Department of Medicinal Chemistry, University of Washington (M.H.).
-
-
-
|