메뉴 건너뛰기




Volumn 276, Issue 5310, 1997, Pages 250-253

Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ

Author keywords

[No Author keywords available]

Indexed keywords

ENDOTHELIAL LEUKOCYTE ADHESION MOLECULE 1; LIPID A;

EID: 0030984298     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.276.5310.250     Document Type: Article
Times cited : (493)

References (46)
  • 2
    • 0011173829 scopus 로고
    • R. Rappuoli, V. Scarlato, B. Arico, Eds. Landes, Austin, TX
    • S. I. Miller, in Signal Transduction and Bacterial Virulence, R. Rappuoli, V. Scarlato, B. Arico, Eds. (Landes, Austin, TX, 1995), pp. 61-77.
    • (1995) Signal Transduction and Bacterial Virulence , pp. 61-77
    • Miller, S.I.1
  • 11
    • 0020590029 scopus 로고
    • 2+-ethanol precipitation procedure for isolation of LPS was chosen because it is effective in extracting both smooth and rough LPS with a high degree of purity [R. P. Darveau and R. E. Hancock, J. Bacteriol. 155, 831 (1983)].
    • (1983) J. Bacteriol. , vol.155 , pp. 831
    • Darveau, R.P.1    Hancock, R.E.2
  • 12
    • 0020326777 scopus 로고
    • - LPS contained different amounts of O-antigen substitution relative to wild-type LPS. Similar results were also obtained when whole-cell rhamnose/3-OH C14:0 ratios were examined [K. Bryn and E. Jantzen, J. Chromatogr. 240, 405 (1982)].
    • (1982) J. Chromatogr. , vol.240 , pp. 405
    • Bryn, K.1    Jantzen, E.2
  • 13
    • 0024287478 scopus 로고
    • Lipid A was made by hydrolysis of LPS in 1% SDS at pH 4.5 [M. Caroff, A. Tacken, L. Szabo, Carbohydr. Res. 175, 273 (1988)]. The presence of SDS is critical to obtain complete hydrolysis of LPS under less acidic pH conditions, such that unwanted hydrolysis of lipid A ester bonds is minimized.
    • (1988) Carbohydr. Res. , vol.175 , pp. 273
    • Caroff, M.1    Tacken, A.2    Szabo, L.3
  • 14
    • 0024289037 scopus 로고
    • M. Karas and F. Hillenkamp, Anal. Chem. 60, 2299 (1988); M. Karas, D. Bachman, U. Bahr, F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes 78, 53 (1987).
    • (1988) Anal. Chem. , vol.60 , pp. 2299
    • Karas, M.1    Hillenkamp, F.2
  • 17
    • 0003018911 scopus 로고
    • J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Mass Spectrom. Rev. 9, 37 (1990); Science 246, 64 (1989); M. Dole, H. L. Cox, J. Gieniec, Adv. Chem. Ser. 125, 73 (1971).
    • (1989) Science , vol.246 , pp. 64
  • 18
    • 0003018911 scopus 로고
    • J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Mass Spectrom. Rev. 9, 37 (1990); Science 246, 64 (1989); M. Dole, H. L. Cox, J. Gieniec, Adv. Chem. Ser. 125, 73 (1971).
    • (1971) Adv. Chem. Ser. , vol.125 , pp. 73
    • Dole, M.1    Cox, H.L.2    Gieniec, J.3
  • 19
    • 0002036019 scopus 로고
    • G. R. Waller, Ed. Wiley, New York, and references therein
    • See G. Odham and E. Stenhagen, in Biochemical Applications of Mass Spectrometry, G. R. Waller, Ed. (Wiley, New York, 1972), pp. 211-228, and references therein; N. J. Jensen and M. L. Gross, Mass Spectram. Rev. 6, 497 (1987), and references therein.
    • (1972) Biochemical Applications of Mass Spectrometry , pp. 211-228
    • Odham, G.1    Stenhagen, E.2
  • 20
    • 84994929780 scopus 로고
    • and references therein
    • See G. Odham and E. Stenhagen, in Biochemical Applications of Mass Spectrometry, G. R. Waller, Ed. (Wiley, New York, 1972), pp. 211-228, and references therein; N. J. Jensen and M. L. Gross, Mass Spectram. Rev. 6, 497 (1987), and references therein.
    • (1987) Mass Spectram. Rev. , vol.6 , pp. 497
    • Jensen, N.J.1    Gross, M.L.2
  • 22
    • 0019855368 scopus 로고
    • M. Vaara, J. Bacteriol. 148, 426 (1981); K. Nummila, I. Kilpelainen, U. Zahringer, M. Vaara, I. M. Helander, Mol. Microbiol. 16, 271 (1995); I. M. Helander, I. Kilpelainen, M. Vaara, ibid. 11, 481 (1994).
    • (1981) J. Bacteriol. , vol.148 , pp. 426
    • Vaara, M.1
  • 24
    • 0028263473 scopus 로고
    • M. Vaara, J. Bacteriol. 148, 426 (1981); K. Nummila, I. Kilpelainen, U. Zahringer, M. Vaara, I. M. Helander, Mol. Microbiol. 16, 271 (1995); I. M. Helander, I. Kilpelainen, M. Vaara, ibid. 11, 481 (1994).
    • (1994) Mol. Microbiol. , vol.11 , pp. 481
    • Helander, I.M.1    Kilpelainen, I.2    Vaara, M.3
  • 26
    • 0029788692 scopus 로고    scopus 로고
    • n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
    • (1996) Methods Enzymol. , vol.270 , pp. 552
    • Schwartz, J.C.1    Jardine, I.2
  • 27
    • 0023386279 scopus 로고
    • n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
    • (1987) Anal. Chem. , vol.59 , pp. 1677
    • Louris, J.N.1
  • 28
    • 0031014649 scopus 로고    scopus 로고
    • n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
    • (1997) Anal. Biochem. , vol.244 , pp. 1
    • Jonscher, K.R.1    Yates III, J.R.2
  • 29
    • 0002785362 scopus 로고
    • R. E. March and J. F. J. Todd, Eds. CRC Press, Boca Raton, FL
    • n experiments and the differences in MS-MS experiments performed with conventional beam-type instrumentation and quadrupole ion traps, see K. R. Jonscher and J. R. Yates III, Anal. Biochem. 244, 1 (1997); J. F. J. Todd, in Practical Aspects of Ion Trap Mass Spectrometry, vol. 3, Chemical, Environmental and Biomedical Applications, R. E. March and J. F. J. Todd, Eds. (CRC Press, Boca Raton, FL, 1995), pp. 4-26.
    • (1995) Practical Aspects of Ion Trap Mass Spectrometry, Vol. 3, Chemical, Environmental and Biomedical Applications , vol.3 , pp. 4-26
    • Todd, J.F.J.1
  • 30
    • 1842376611 scopus 로고    scopus 로고
    • note
    • - (molecular anion) at m/z 323. The 3-phospho product was not stable and was observed to undergo a spontaneous net gain of two mass units, to m/z 325, followed by elimination of phosphate. Fragmentation of synthetic 2-phosphomyristate observed in the triple-quadrupole MS and ion trap did not support assigning such a side chain to the modified lipid A structure. However, a structure containing 4′ phosphate cannot be ruled out.
  • 32
    • 0028902201 scopus 로고
    • J. E. Somerville, L. Cassiano, B. Bainbridge, M. D. Cunningham, R. P. Darveau, J. Clin. Invest. 97, 359 (1996); R. P. Darveau et al., Infect. Immun. 63, 1311 (1995).
    • (1995) Infect. Immun. , vol.63 , pp. 1311
    • Darveau, R.P.1
  • 33
    • 0025166114 scopus 로고
    • Two serum proteins are also involved in this process: LPS-binding protein (LBP) and either soluble or membrane-bound CD14 [S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, J. C. Mathison, Science 249, 1431 (1990); E. A. Frey et al., J. Exp. Med. 176, 1665 (1992); J. Pugin et al., Proc. Natl. Acad. Sci. U.S.A. 90, 2744 (1993)].
    • (1990) Science , vol.249 , pp. 1431
    • Wright, S.D.1    Ramos, R.A.2    Tobias, P.S.3    Ulevitch, R.J.4    Mathison, J.C.5
  • 34
    • 0026463120 scopus 로고
    • Two serum proteins are also involved in this process: LPS-binding protein (LBP) and either soluble or membrane-bound CD14 [S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, J. C. Mathison, Science 249, 1431 (1990); E. A. Frey et al., J. Exp. Med. 176, 1665 (1992); J. Pugin et al., Proc. Natl. Acad. Sci. U.S.A. 90, 2744 (1993)].
    • (1992) J. Exp. Med. , vol.176 , pp. 1665
    • Frey, E.A.1
  • 35
    • 0027446922 scopus 로고
    • Two serum proteins are also involved in this process: LPS-binding protein (LBP) and either soluble or membrane-bound CD14 [S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, J. C. Mathison, Science 249, 1431 (1990); E. A. Frey et al., J. Exp. Med. 176, 1665 (1992); J. Pugin et al., Proc. Natl. Acad. Sci. U.S.A. 90, 2744 (1993)].
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 2744
    • Pugin, J.1
  • 36
  • 37
    • 0024601077 scopus 로고
    • P. I. Fields, E. A. Groisman, F. Heffron, ibid. 243, 1059 (1989); S. I. Miller, W. S. Pulkkinen, M. E. Selsted, J. J. Mekalanos, Infect. Immun. 58, 3706 (1990).
    • (1989) Science , vol.243 , pp. 1059
    • Fields, P.I.1    Groisman, E.A.2    Heffron, F.3
  • 39
    • 0028354341 scopus 로고    scopus 로고
    • For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
    • (1994) Anal. Biochem. , vol.218 , pp. 63
    • Chan, S.1    Reinhold, V.N.2
  • 40
    • 0027469424 scopus 로고
    • For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
    • (1993) Biol. Mass Spectrom. , vol.22 , pp. 59
    • Harrata, A.K.1    Domelsmith, L.N.2    Cole, R.B.3
  • 41
    • 0021100280 scopus 로고
    • For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
    • (1983) J. Biol. Chem. , vol.258 , pp. 12801
    • Takayama, K.1    Qureshi, N.2    Mascagni, P.3
  • 42
    • 0028354341 scopus 로고    scopus 로고
    • For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
    • J. Biol. Chem. , pp. 12947
    • Qureshi, N.1    Takayama, K.2    Heller, D.3    Fenselau, C.4
  • 43
    • 0020367633 scopus 로고
    • For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
    • (1982) J. Biol. Chem. , vol.257 , pp. 11808
    • Qureshi, N.1    Takayama, K.2    Ribi, E.3
  • 44
    • 0027255391 scopus 로고
    • For previous electrospray negative-ion studies of the diphosphoryl form of lipid A, see S. Chan and V. N. Reinhold, Anal. Biochem. 218, 63 (1994); A. K. Harrata, L. N. Domelsmith, R. B. Cole, Biol. Mass Spectrom. 22, 59 (1993). For previous studies that used proton nuclear magnetic resonance (NMR) MS and positive-ion fast atom bombardment (FAB) MS, see K. Takayama, N. Qureshi, P. Mascagni, J. Biol. Chem. 258, 12801 (1983); N. Qureshi, K. Takayama, D. Heller, C. Fenselau, ibid., p. 12947; N. Qureshi, K. Takayama, E. Ribi, ibid. 257, 11808 (1982). For a review of the biosynthesis, structure, and function of lipid A, see C. R. H. Raetz, J. Bacteriol. 175, 5745 (1993). The attachment of aminoarabinose to the glucosamine dimer cannot be assigned unequivocally on the basis of our data alone. Because the bond linking aminoarabinose to 4′ phosphate is highly labile, we have been unable to isolate an ion containing aminoarabinose linked to a fragment of lipid A, other than the molecular ion itself. However, there are other studies that support assigning the aminoarabinose substitution at the 4′ phosphate position (18).
    • (1993) J. Bacteriol. , vol.175 , pp. 5745
    • Raetz, C.R.H.1
  • 45
    • 1842326554 scopus 로고    scopus 로고
    • note
    • K. B. Lim and M. Hackett, data not shown. Both m/z 159 and 177 lost phosphate when fragmented in the ion trap.
  • 46
    • 1842325942 scopus 로고    scopus 로고
    • note
    • We thank K. A. Walsh and L. H. Ericsson for MALDITOF and triple-quadrupole mass spectrometers; J. R. Yates III for the ion trap; M. Sanders and W. Loyd for assistance with the ion trap experiments; W. N. Howald for the GC-MS analyses; F. Turecek and W. L. Nelson for reviewing the MS results; M. Gelb for suggesting the synthesis scheme in (21); and J. Kowalak, H. Wang, J. Somerville, J. Eng, A. R. Dongre, and E. Carmack for their assistance. Supported by NIH grant R01 Al30479 (S.I.M.) and the School of Pharmacy and Department of Medicinal Chemistry, University of Washington (M.H.).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.