-
1
-
-
0026545681
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1992)
Science
, vol.258
, pp. 471
-
-
Rutz, J.M.1
-
2
-
-
0027308190
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1993)
EMBO J.
, vol.12
, pp. 3007
-
-
Killmann, H.1
Benz, R.2
Braun, V.3
-
3
-
-
0026458015
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1992)
Science
, vol.258
, pp. 936
-
-
Nikaido, H.1
Saier Jr., M.H.2
-
4
-
-
0028921479
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1995)
Nature
, vol.373
, pp. 37
-
-
Unwin, N.1
-
5
-
-
0030115001
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1996)
Mol. Neurobiol.
, vol.12
, pp. 117
-
-
Rathouz, M.M.1
Sijayaraghavan, S.2
Berg, D.K.3
-
6
-
-
0030064633
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1996)
J. Neuroseci. Res.
, vol.43
, pp. 127
-
-
Aprison, M.H.1
Galvez-Ruano, E.2
Lipkowitz, K.B.3
-
7
-
-
0030176455
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1996)
Curr. Opin. Neurobiol.
, vol.6
, pp. 303
-
-
Jentsch, T.J.1
-
8
-
-
0030222776
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1996)
Trends Pharmacol. Sci.
, vol.17
, pp. 319
-
-
Johnson, G.A.1
-
9
-
-
0030218118
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
(1996)
Curr. Opin. Neurobiol.
, vol.6
, pp. 445
-
-
Molday, R.S.1
-
10
-
-
0026545681
-
-
A (γ-aminobutyric acid) receptor families [G. A. Johnson, Trends Pharmacol. Sci. 17, 319 (1996)], the cyclic nucleotide-gated channels [R. S. Molday, Curr. Opin. Neurobiol. 6, 445 (1996)], and the ionotropic glutamate receptors (N. Burnashev, ibid, p. 311).
-
Curr. Opin. Neurobiol.
, pp. 311
-
-
Burnashev, N.1
-
12
-
-
0020346483
-
-
3+ that is recognized and transported by most Gram-negative bacteria [J. B. Neilands, Annu. Rev. Microbiol. 36, 285 (1982); J. Biol. Chem. 270, 26723 (1995); J. M. Rutz, T. Abdullah, S. P. Singh, V. I. Kalve, P. E. Klebba, J. Bacteriol. 173, 5694 (1991)].
-
(1982)
Annu. Rev. Microbiol.
, vol.36
, pp. 285
-
-
Neilands, J.B.1
-
13
-
-
0028850367
-
-
3+ that is recognized and transported by most Gram-negative bacteria [J. B. Neilands, Annu. Rev. Microbiol. 36, 285 (1982); J. Biol. Chem. 270, 26723 (1995); J. M. Rutz, T. Abdullah, S. P. Singh, V. I. Kalve, P. E. Klebba, J. Bacteriol. 173, 5694 (1991)].
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 26723
-
-
-
14
-
-
0020346483
-
-
3+ that is recognized and transported by most Gram-negative bacteria [J. B. Neilands, Annu. Rev. Microbiol. 36, 285 (1982); J. Biol. Chem. 270, 26723 (1995); J. M. Rutz, T. Abdullah, S. P. Singh, V. I. Kalve, P. E. Klebba, J. Bacteriol. 173, 5694 (1991)].
-
(1991)
J. Bacteriol.
, vol.173
, pp. 5694
-
-
Rutz, J.M.1
Abdullah, T.2
Singh, S.P.3
Kalve, V.I.4
Klebba, P.E.5
-
15
-
-
0025345316
-
-
General porins, like Rhodobacter capsulatus porin [M.S. Weiss et al., FEBS Lett. 267, 268 (1990); M. S. Weiss et al., Science 254, 1627 (1991)] and E. coli OmpF [S. K. Cowan et al., Nature 358, 727 (1992)], form water-filled, transmembrane β barrels, with an approximate size-exclusion diameter of 10 Å [H. Nikaido and E. Rosenberg, J. Gen Physiol. 77, 121 (1981); J. Bacteriol. 153, 241 (1981)].
-
(1990)
FEBS Lett.
, vol.267
, pp. 268
-
-
Weiss, M.S.1
-
16
-
-
0026331041
-
-
General porins, like Rhodobacter capsulatus porin [M.S. Weiss et al., FEBS Lett. 267, 268 (1990); M. S. Weiss et al., Science 254, 1627 (1991)] and E. coli OmpF [S. K. Cowan et al., Nature 358, 727 (1992)], form water-filled, transmembrane β barrels, with an approximate size-exclusion diameter of 10 Å [H. Nikaido and E. Rosenberg, J. Gen Physiol. 77, 121 (1981); J. Bacteriol. 153, 241 (1981)].
-
(1991)
Science
, vol.254
, pp. 1627
-
-
Weiss, M.S.1
-
17
-
-
0026779245
-
-
General porins, like Rhodobacter capsulatus porin [M.S. Weiss et al., FEBS Lett. 267, 268 (1990); M. S. Weiss et al., Science 254, 1627 (1991)] and E. coli OmpF [S. K. Cowan et al., Nature 358, 727 (1992)], form water-filled, transmembrane β barrels, with an approximate size-exclusion diameter of 10 Å [H. Nikaido and E. Rosenberg, J. Gen Physiol. 77, 121 (1981); J. Bacteriol. 153, 241 (1981)].
-
(1992)
Nature
, vol.358
, pp. 727
-
-
Cowan, S.K.1
-
18
-
-
0019824138
-
-
General porins, like Rhodobacter capsulatus porin [M.S. Weiss et al., FEBS Lett. 267, 268 (1990); M. S. Weiss et al., Science 254, 1627 (1991)] and E. coli OmpF [S. K. Cowan et al., Nature 358, 727 (1992)], form water-filled, transmembrane β barrels, with an approximate size-exclusion diameter of 10 Å [H. Nikaido and E. Rosenberg, J. Gen Physiol. 77, 121 (1981); J. Bacteriol. 153, 241 (1981)].
-
(1981)
J. Gen Physiol.
, vol.77
, pp. 121
-
-
Nikaido, H.1
Rosenberg, E.2
-
19
-
-
0025345316
-
-
General porins, like Rhodobacter capsulatus porin [M.S. Weiss et al., FEBS Lett. 267, 268 (1990); M. S. Weiss et al., Science 254, 1627 (1991)] and E. coli OmpF [S. K. Cowan et al., Nature 358, 727 (1992)], form water-filled, transmembrane β barrels, with an approximate size-exclusion diameter of 10 Å [H. Nikaido and E. Rosenberg, J. Gen Physiol. 77, 121 (1981); J. Bacteriol. 153, 241 (1981)].
-
(1981)
J. Bacteriol.
, vol.153
, pp. 241
-
-
-
20
-
-
0018710740
-
-
P. H. Williams, Infect. Immun. 26, 925 (1979); M. Wolf and J. H. Crosa, J. Gen. Microbiol. 132, 2949 (1986); M. L. Guerinot, Annu. Rev. Microbiol. 48, 743 (1994).
-
(1979)
Infect. Immun.
, vol.26
, pp. 925
-
-
Williams, P.H.1
-
21
-
-
0022900950
-
-
P. H. Williams, Infect. Immun. 26, 925 (1979); M. Wolf and J. H. Crosa, J. Gen. Microbiol. 132, 2949 (1986); M. L. Guerinot, Annu. Rev. Microbiol. 48, 743 (1994).
-
(1986)
J. Gen. Microbiol.
, vol.132
, pp. 2949
-
-
Wolf, M.1
Crosa, J.H.2
-
22
-
-
0027945605
-
-
P. H. Williams, Infect. Immun. 26, 925 (1979); M. Wolf and J. H. Crosa, J. Gen. Microbiol. 132, 2949 (1986); M. L. Guerinot, Annu. Rev. Microbiol. 48, 743 (1994).
-
(1994)
Annu. Rev. Microbiol.
, vol.48
, pp. 743
-
-
Guerinot, M.L.1
-
23
-
-
0029151113
-
-
For review, see C. J. Lazdunski, Mol. Microbiol. 16, 1059 (1995); H. Benedetti et al., J. Gen. Microbiol. 135, 3413 (1989).
-
(1995)
Mol. Microbiol.
, vol.16
, pp. 1059
-
-
Lazdunski, C.J.1
-
24
-
-
0024789570
-
-
For review, see C. J. Lazdunski, Mol. Microbiol. 16, 1059 (1995); H. Benedetti et al., J. Gen. Microbiol. 135, 3413 (1989).
-
(1989)
J. Gen. Microbiol.
, vol.135
, pp. 3413
-
-
Benedetti, H.1
-
25
-
-
0026009691
-
-
M. J. Miller, J. A. McKee, A. A. Minnick, E. K. Dolence, Biol. Met. 4, 62 (1991); A. Brochu et al., Antimicrob. Agents Chemother. 36, 2166 (1992).
-
(1991)
Biol. Met.
, vol.4
, pp. 62
-
-
Miller, M.J.1
McKee, J.A.2
Minnick, A.A.3
Dolence, E.K.4
-
26
-
-
0026728122
-
-
M. J. Miller, J. A. McKee, A. A. Minnick, E. K. Dolence, Biol. Met. 4, 62 (1991); A. Brochu et al., Antimicrob. Agents Chemother. 36, 2166 (1992).
-
(1992)
Antimicrob. Agents Chemother.
, vol.36
, pp. 2166
-
-
Brochu, A.1
-
27
-
-
0025344359
-
-
C. K. Murphy, V. I. Kalve, P. E. Klebba, J. Bacteriol. 172, 2736 (1990); S. M. C. Newton et al., Proc. Natl. Acad. Sci. U.S.A., 94, 4560 (1997).
-
(1990)
J. Bacteriol.
, vol.172
, pp. 2736
-
-
Murphy, C.K.1
Kalve, V.I.2
Klebba, P.E.3
-
28
-
-
12644299636
-
-
C. K. Murphy, V. I. Kalve, P. E. Klebba, J. Bacteriol. 172, 2736 (1990); S. M. C. Newton et al., Proc. Natl. Acad. Sci. U.S.A., 94, 4560 (1997).
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 4560
-
-
Newton, S.M.C.1
-
29
-
-
0026545681
-
-
J. M. Rutz et al., Science 258, 471 (1992); J. Liu, J. M. Rutz, J. B. Feix, P. E. Klebba, Proc. Natl. Acad. Sci. U.S.A. 90, 10653 (1993).
-
(1992)
Science
, vol.258
, pp. 471
-
-
Rutz, J.M.1
-
30
-
-
0027375517
-
-
J. M. Rutz et al., Science 258, 471 (1992); J. Liu, J. M. Rutz, J. B. Feix, P. E. Klebba, Proc. Natl. Acad. Sci. U.S.A. 90, 10653 (1993).
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 10653
-
-
Liu, J.1
Rutz, J.M.2
Feix, J.B.3
Klebba, P.E.4
-
31
-
-
0025572764
-
-
2-terminus resides in the cytoplasmic membrane, but downstream regions of its sequence may project across the periplasm and facilitate transport through OM receptors by direct, protein-protein interactions [for review, see R. J. Kadner. Mol. Microbiol. 4, 2027 (1990); K. Postle, ibid., p. 2019; V. Braun, K. Gunter, K. Hantke, Biol. Met. 4, 14 (1991); P. E. Klebba, J. M. Rutz, J. Liu, C. K. Murphy, J. Bioenerg. Biomembr. 25, 603 (1993)].
-
(1990)
Mol. Microbiol.
, vol.4
, pp. 2027
-
-
Kadner, R.J.1
-
32
-
-
1842266165
-
-
2-terminus resides in the cytoplasmic membrane, but downstream regions of its sequence may project across the periplasm and facilitate transport through OM receptors by direct, protein-protein interactions [for review, see R. J. Kadner. Mol. Microbiol. 4, 2027 (1990); K. Postle, ibid., p. 2019; V. Braun, K. Gunter, K. Hantke, Biol. Met. 4, 14 (1991); P. E. Klebba, J. M. Rutz, J. Liu, C. K. Murphy, J. Bioenerg. Biomembr. 25, 603 (1993)].
-
Mol. Microbiol.
, pp. 2019
-
-
Postle, K.1
-
33
-
-
0026002436
-
-
2-terminus resides in the cytoplasmic membrane, but downstream regions of its sequence may project across the periplasm and facilitate transport through OM receptors by direct, protein-protein interactions [for review, see R. J. Kadner. Mol. Microbiol. 4, 2027 (1990); K. Postle, ibid., p. 2019; V. Braun, K. Gunter, K. Hantke, Biol. Met. 4, 14 (1991); P. E. Klebba, J. M. Rutz, J. Liu, C. K. Murphy, J. Bioenerg. Biomembr. 25, 603 (1993)].
-
(1991)
Biol. Met.
, vol.4
, pp. 14
-
-
Braun, V.1
Gunter, K.2
Hantke, K.3
-
34
-
-
0027729136
-
-
2-terminus resides in the cytoplasmic membrane, but downstream regions of its sequence may project across the periplasm and facilitate transport through OM receptors by direct, protein-protein interactions [for review, see R. J. Kadner. Mol. Microbiol. 4, 2027 (1990); K. Postle, ibid., p. 2019; V. Braun, K. Gunter, K. Hantke, Biol. Met. 4, 14 (1991); P. E. Klebba, J. M. Rutz, J. Liu, C. K. Murphy, J. Bioenerg. Biomembr. 25, 603 (1993)].
-
(1993)
J. Bioenerg. Biomembr.
, vol.25
, pp. 603
-
-
Klebba, P.E.1
Rutz, J.M.2
Liu, J.3
Murphy, C.K.4
-
35
-
-
0025599473
-
-
K. Hannavy et al., J. Mol. Biol. 216, 897 (1990); S. K. Roof, J. D. Allard, K. P. Bertrand, K. Postle, J. Bacteriol. 173, 5554 (1991).
-
(1990)
J. Mol. Biol.
, vol.216
, pp. 897
-
-
Hannavy, K.1
-
36
-
-
0025992835
-
-
K. Hannavy et al., J. Mol. Biol. 216, 897 (1990); S. K. Roof, J. D. Allard, K. P. Bertrand, K. Postle, J. Bacteriol. 173, 5554 (1991).
-
(1991)
J. Bacteriol.
, vol.173
, pp. 5554
-
-
Roof, S.K.1
Allard, J.D.2
Bertrand, K.P.3
Postle, K.4
-
37
-
-
1842284766
-
-
12, bacteriophage BF23, and colicin E1 and E3 by BtuB [D. R. DiMasi et al., J. Bacteriol. 115, 56 (1973)]; the recognition of ferric enterobactin and colicins B and D by FepA [S. Guterman, ibid. 114, 1217 (1973); A. P. Pugsley and P. Reeves, ibid. 126, 1052 (1976); R. R. Wayne, K. Frick, J. B. Neilands, ibid., p. 7]; the binding of ferrichrome; bacteriophages T1, T5, and φ80; colicin M; and albomycin to TonA (FhuA) [R. Wayne and J. B. Neilands, ibid. 121, 497 (1975)]; and the binding of colicins A and N to OmpF [H. Benedetti et al., J. Mol. Biol. 217, 429 (1991)].
-
(1973)
J. Bacteriol.
, vol.115
, pp. 56
-
-
DiMasi, D.R.1
-
38
-
-
0015633396
-
-
12, bacteriophage BF23, and colicin E1 and E3 by BtuB [D. R. DiMasi et al., J. Bacteriol. 115, 56 (1973)]; the recognition of ferric enterobactin and colicins B and D by FepA [S. Guterman, ibid. 114, 1217 (1973); A. P. Pugsley and P. Reeves, ibid. 126, 1052 (1976); R. R. Wayne, K. Frick, J. B. Neilands, ibid., p. 7]; the binding of ferrichrome; bacteriophages T1, T5, and φ80; colicin M; and albomycin to TonA (FhuA) [R. Wayne and J. B. Neilands, ibid. 121, 497 (1975)]; and the binding of colicins A and N to OmpF [H. Benedetti et al., J. Mol. Biol. 217, 429 (1991)].
-
(1973)
J. Bacteriol.
, vol.114
, pp. 1217
-
-
Guterman, S.1
-
39
-
-
0017063131
-
-
12, bacteriophage BF23, and colicin E1 and E3 by BtuB [D. R. DiMasi et al., J. Bacteriol. 115, 56 (1973)]; the recognition of ferric enterobactin and colicins B and D by FepA [S. Guterman, ibid. 114, 1217 (1973); A. P. Pugsley and P. Reeves, ibid. 126, 1052 (1976); R. R. Wayne, K. Frick, J. B. Neilands, ibid., p. 7]; the binding of ferrichrome; bacteriophages T1, T5, and φ80; colicin M; and albomycin to TonA (FhuA) [R. Wayne and J. B. Neilands, ibid. 121, 497 (1975)]; and the binding of colicins A and N to OmpF [H. Benedetti et al., J. Mol. Biol. 217, 429 (1991)].
-
(1976)
J. Bacteriol.
, vol.126
, pp. 1052
-
-
Pugsley, A.P.1
Reeves, P.2
-
40
-
-
1842397366
-
-
12, bacteriophage BF23, and colicin E1 and E3 by BtuB [D. R. DiMasi et al., J. Bacteriol. 115, 56 (1973)]; the recognition of ferric enterobactin and colicins B and D by FepA [S. Guterman, ibid. 114, 1217 (1973); A. P. Pugsley and P. Reeves, ibid. 126, 1052 (1976); R. R. Wayne, K. Frick, J. B. Neilands, ibid., p. 7]; the binding of ferrichrome; bacteriophages T1, T5, and φ80; colicin M; and albomycin to TonA (FhuA) [R. Wayne and J. B. Neilands, ibid. 121, 497 (1975)]; and the binding of colicins A and N to OmpF [H. Benedetti et al., J. Mol. Biol. 217, 429 (1991)].
-
J. Bacteriol.
, pp. 7
-
-
Wayne, R.R.1
Frick, K.2
Neilands, J.B.3
-
41
-
-
0016441805
-
-
12, bacteriophage BF23, and colicin E1 and E3 by BtuB [D. R. DiMasi et al., J. Bacteriol. 115, 56 (1973)]; the recognition of ferric enterobactin and colicins B and D by FepA [S. Guterman, ibid. 114, 1217 (1973); A. P. Pugsley and P. Reeves, ibid. 126, 1052 (1976); R. R. Wayne, K. Frick, J. B. Neilands, ibid., p. 7]; the binding of ferrichrome; bacteriophages T1, T5, and φ80; colicin M; and albomycin to TonA (FhuA) [R. Wayne and J. B. Neilands, ibid. 121, 497 (1975)]; and the binding of colicins A and N to OmpF [H. Benedetti et al., J. Mol. Biol. 217, 429 (1991)].
-
(1975)
J. Bacteriol.
, vol.121
, pp. 497
-
-
Wayne, R.1
Neilands, J.B.2
-
42
-
-
0026089656
-
-
12, bacteriophage BF23, and colicin E1 and E3 by BtuB [D. R. DiMasi et al., J. Bacteriol. 115, 56 (1973)]; the recognition of ferric enterobactin and colicins B and D by FepA [S. Guterman, ibid. 114, 1217 (1973); A. P. Pugsley and P. Reeves, ibid. 126, 1052 (1976); R. R. Wayne, K. Frick, J. B. Neilands, ibid., p. 7]; the binding of ferrichrome; bacteriophages T1, T5, and φ80; colicin M; and albomycin to TonA (FhuA) [R. Wayne and J. B. Neilands, ibid. 121, 497 (1975)]; and the binding of colicins A and N to OmpF [H. Benedetti et al., J. Mol. Biol. 217, 429 (1991)].
-
(1991)
J. Mol. Biol.
, vol.217
, pp. 429
-
-
Benedetti, H.1
-
43
-
-
1842344069
-
-
The proposed model of FepA folding contains 29 hydrophobic or amphiphilic β strands that create a transmembrane β barrel and 14 surface loops, designated here PL1 through PL14 (8, 9)
-
The proposed model of FepA folding contains 29 hydrophobic or amphiphilic β strands that create a transmembrane β barrel and 14 surface loops, designated here PL1 through PL14 (8, 9).
-
-
-
-
44
-
-
0027716597
-
-
Z. T. Farahbakhsh, K. Hideg, W. L. Hubbell, Science 262, 1416 (1993); Y.-K. Shin, C. Levinthal, F. Levinthal, W. L. Hubbell ibid. 259, 960 (1993); W. L. Hubbell and C. Altenbach, Curr. Opin. Struct. Biol. 4, 566 (1994); L. J. Berliner and J. B. Reuben, Spin Labeling: Theory and Applications (Plenum, New York, 1989), vol. 8; C. Altenbach, T. Marti, H. G. Khorana, W. L. Hubbell, Science 248, 1088 (1990); C. Altenbach, S. L Flitsch, H. G. Khorana, W. L. Hubbell, Biochemistry 28, 7806 (1989); Z. T. Farahbakhsh, K. D. Ridge, H. G. Khorana, W. L. Hubbell, ibid. 34, 8812 (1995).
-
(1993)
Science
, vol.262
, pp. 1416
-
-
Farahbakhsh, Z.T.1
Hideg, K.2
Hubbell, W.L.3
-
45
-
-
0027447891
-
-
Z. T. Farahbakhsh, K. Hideg, W. L. Hubbell, Science 262, 1416 (1993); Y.-K. Shin, C. Levinthal, F. Levinthal, W. L. Hubbell ibid. 259, 960 (1993); W. L. Hubbell and C. Altenbach, Curr. Opin. Struct. Biol. 4, 566 (1994); L. J. Berliner and J. B. Reuben, Spin Labeling: Theory and Applications (Plenum, New York, 1989), vol. 8; C. Altenbach, T. Marti, H. G. Khorana, W. L. Hubbell, Science 248, 1088 (1990); C. Altenbach, S. L Flitsch, H. G. Khorana, W. L. Hubbell, Biochemistry 28, 7806 (1989); Z. T. Farahbakhsh, K. D. Ridge, H. G. Khorana, W. L. Hubbell, ibid. 34, 8812 (1995).
-
(1993)
Science
, vol.259
, pp. 960
-
-
Shin, Y.-K.1
Levinthal, C.2
Levinthal, F.3
Hubbell, W.L.4
-
46
-
-
0028108981
-
-
Z. T. Farahbakhsh, K. Hideg, W. L. Hubbell, Science 262, 1416 (1993); Y.-K. Shin, C. Levinthal, F. Levinthal, W. L. Hubbell ibid. 259, 960 (1993); W. L. Hubbell and C. Altenbach, Curr. Opin. Struct. Biol. 4, 566 (1994); L. J. Berliner and J. B. Reuben, Spin Labeling: Theory and Applications (Plenum, New York, 1989), vol. 8; C. Altenbach, T. Marti, H. G. Khorana, W. L. Hubbell, Science 248, 1088 (1990); C. Altenbach, S. L Flitsch, H. G. Khorana, W. L. Hubbell, Biochemistry 28, 7806 (1989); Z. T. Farahbakhsh, K. D. Ridge, H. G. Khorana, W. L. Hubbell, ibid. 34, 8812 (1995).
-
(1994)
Curr. Opin. Struct. Biol.
, vol.4
, pp. 566
-
-
Hubbell, W.L.1
Altenbach, C.2
-
47
-
-
0027716597
-
-
Plenum, New York
-
Z. T. Farahbakhsh, K. Hideg, W. L. Hubbell, Science 262, 1416 (1993); Y.-K. Shin, C. Levinthal, F. Levinthal, W. L. Hubbell ibid. 259, 960 (1993); W. L. Hubbell and C. Altenbach, Curr. Opin. Struct. Biol. 4, 566 (1994); L. J. Berliner and J. B. Reuben, Spin Labeling: Theory and Applications (Plenum, New York, 1989), vol. 8; C. Altenbach, T. Marti, H. G. Khorana, W. L. Hubbell, Science 248, 1088 (1990); C. Altenbach, S. L Flitsch, H. G. Khorana, W. L. Hubbell, Biochemistry 28, 7806 (1989); Z. T. Farahbakhsh, K. D. Ridge, H. G. Khorana, W. L. Hubbell, ibid. 34, 8812 (1995).
-
(1989)
Spin Labeling: Theory and Applications
, vol.8
-
-
Berliner, L.J.1
Reuben, J.B.2
-
48
-
-
0025346254
-
-
Z. T. Farahbakhsh, K. Hideg, W. L. Hubbell, Science 262, 1416 (1993); Y.-K. Shin, C. Levinthal, F. Levinthal, W. L. Hubbell ibid. 259, 960 (1993); W. L. Hubbell and C. Altenbach, Curr. Opin. Struct. Biol. 4, 566 (1994); L. J. Berliner and J. B. Reuben, Spin Labeling: Theory and Applications (Plenum, New York, 1989), vol. 8; C. Altenbach, T. Marti, H. G. Khorana, W. L. Hubbell, Science 248, 1088 (1990); C. Altenbach, S. L Flitsch, H. G. Khorana, W. L. Hubbell, Biochemistry 28, 7806 (1989); Z. T. Farahbakhsh, K. D. Ridge, H. G. Khorana, W. L. Hubbell, ibid. 34, 8812 (1995).
-
(1990)
Science
, vol.248
, pp. 1088
-
-
Altenbach, C.1
Marti, T.2
Khorana, H.G.3
Hubbell, W.L.4
-
49
-
-
0024974071
-
-
Z. T. Farahbakhsh, K. Hideg, W. L. Hubbell, Science 262, 1416 (1993); Y.-K. Shin, C. Levinthal, F. Levinthal, W. L. Hubbell ibid. 259, 960 (1993); W. L. Hubbell and C. Altenbach, Curr. Opin. Struct. Biol. 4, 566 (1994); L. J. Berliner and J. B. Reuben, Spin Labeling: Theory and Applications (Plenum, New York, 1989), vol. 8; C. Altenbach, T. Marti, H. G. Khorana, W. L. Hubbell, Science 248, 1088 (1990); C. Altenbach, S. L Flitsch, H. G. Khorana, W. L. Hubbell, Biochemistry 28, 7806 (1989); Z. T. Farahbakhsh, K. D. Ridge, H. G. Khorana, W. L. Hubbell, ibid. 34, 8812 (1995).
-
(1989)
Biochemistry
, vol.28
, pp. 7806
-
-
Altenbach, C.1
Flitsch, S.L.2
Khorana, H.G.3
Hubbell, W.L.4
-
50
-
-
0029035661
-
-
Z. T. Farahbakhsh, K. Hideg, W. L. Hubbell, Science 262, 1416 (1993); Y.-K. Shin, C. Levinthal, F. Levinthal, W. L. Hubbell ibid. 259, 960 (1993); W. L. Hubbell and C. Altenbach, Curr. Opin. Struct. Biol. 4, 566 (1994); L. J. Berliner and J. B. Reuben, Spin Labeling: Theory and Applications (Plenum, New York, 1989), vol. 8; C. Altenbach, T. Marti, H. G. Khorana, W. L. Hubbell, Science 248, 1088 (1990); C. Altenbach, S. L Flitsch, H. G. Khorana, W. L. Hubbell, Biochemistry 28, 7806 (1989); Z. T. Farahbakhsh, K. D. Ridge, H. G. Khorana, W. L. Hubbell, ibid. 34, 8812 (1995).
-
(1995)
Biochemistry
, vol.34
, pp. 8812
-
-
Farahbakhsh, Z.T.1
Ridge, K.D.2
Khorana, H.G.3
Hubbell, W.L.4
-
51
-
-
1842388601
-
-
FepAE280C contains the site-directed substitution of Cys for Glu at residue 280
-
FepAE280C contains the site-directed substitution of Cys for Glu at residue 280.
-
-
-
-
52
-
-
0020973805
-
-
At neutrality, MAL6 labels Cys residues about 1000-fold more efficiently than it does Lys; the specificity of MTSL for Cys is essentially absolute [L. J. Berliner, Ann. N.Y. Acad. Sci. 414, 153 (1983)].
-
(1983)
Ann. N.Y. Acad. Sci.
, vol.414
, pp. 153
-
-
Berliner, L.J.1
-
53
-
-
0028051476
-
-
J. Liu, J. M. Rutz, P. E. Klebba, J. B. Feix, Biochemistry 33, 13274 (1994).
-
(1994)
Biochemistry
, vol.33
, pp. 13274
-
-
Liu, J.1
Rutz, J.M.2
Klebba, P.E.3
Feix, J.B.4
-
54
-
-
0028946962
-
-
The determination of labeling specificity presents an obstacle to the site-directed spin labeling of living cells. In the case of bacteria, however, the selectivity of chemical labeling can be evaluated by the use of null mutants [for example, FepA-deficient (fepA) bacteria; Fig. 1]. Furthermore, bacterial OM proteins contain few Cys residues, and available data suggest that those form disulfide bonds deep in tertiary structure [T. Schirmer, T. A. Keller, Y.-F. Wang, J. P. Rosenbusch, Science 267, 512 (1995); (75)]. Therefore, in combination with site-directed mutagenesis to introduce unique Cys residues, spin labels can be attached and verified at sites of interest within membrane proteins of viable cells.
-
(1995)
Science
, vol.267
, pp. 512
-
-
Schirmer, T.1
Keller, T.A.2
Wang, Y.-F.3
Rosenbusch, J.P.4
-
55
-
-
1842322964
-
-
note
-
Strongly immobilized spins probably result from steric hindrance of spin-label motion (rotation) by adjoining components of protein structure. Weakly immobilized spins, on the other hand, originate from the localization of the spin label in a less restricted environment, probably in better contact with the aqueous milieu. To determine the percentage of weakly immobilized spins, we double-integrated spectra in region of peaks a and b (3443 to 3477 G), using the Bruker WinEPR analysis software, and calculated the ratio of areas b/(a + b).
-
-
-
-
56
-
-
1842359656
-
-
note
-
The instantaneous fraction of weakly immobilized spins was not determined from X-band field sweeps (Fig. 2), because the ferric enterobactin transport reaction occurs much faster (8) than the time required (8 min) to collect the signal average of the six field sweeps shown in Fig. 2. Double integrations of the X-band spectra in Fig. 2 represent an average percentage of weakly or strongly immobilized spins, collected over an 8-min period.
-
-
-
-
58
-
-
0028858144
-
-
C. S. Klug, W. Su, J. Liu, P. E. Klebba, J. B. Feix, Biochemistry 34, 14230 (1995).
-
(1995)
Biochemistry
, vol.34
, pp. 14230
-
-
Klug, C.S.1
Su, W.2
Liu, J.3
Klebba, P.E.4
Feix, J.B.5
-
59
-
-
1842397365
-
-
unpublished data; (8, 17)
-
MTSL-labeled FepAE280C bound and transported ferric enterobactin comparably to wild-type FepA [S. M. C. Newton and P. E. Klebba, unpublished data; (8, 17)].
-
-
-
Newton, S.M.C.1
Klebba, P.E.2
-
60
-
-
0026541379
-
-
H. Benedetti, R. Lloubes, C. Lazdunski, L. Letellier, EMBO J. 11, 441 (1992); V. Braun, J. Frenz, K. Hantke, K. Schaller, J. Bacteriol. 142, 162 (1980); D. Baty et al., Biochimie 72, 123 (1990); M. Wisner, D. Freymann, P. Ghosh, R. M. Stroud, Nature 385, 481 (1997). Subsequent to OM penetration, pore-forming bacteriocins like colicin B remain associated with their OM receptors, but traverse the periplasm to form voltage-gated channels in the inner membrane that depolarize cellular energetics.
-
(1992)
EMBO J.
, vol.11
, pp. 441
-
-
Benedetti, H.1
Lloubes, R.2
Lazdunski, C.3
Letellier, L.4
-
61
-
-
0018946246
-
-
H. Benedetti, R. Lloubes, C. Lazdunski, L. Letellier, EMBO J. 11, 441 (1992); V. Braun, J. Frenz, K. Hantke, K. Schaller, J. Bacteriol. 142, 162 (1980); D. Baty et al., Biochimie 72, 123 (1990); M. Wisner, D. Freymann, P. Ghosh, R. M. Stroud, Nature 385, 481 (1997). Subsequent to OM penetration, pore-forming bacteriocins like colicin B remain associated with their OM receptors, but traverse the periplasm to form voltage-gated channels in the inner membrane that depolarize cellular energetics.
-
(1980)
J. Bacteriol.
, vol.142
, pp. 162
-
-
Braun, V.1
Frenz, J.2
Hantke, K.3
Schaller, K.4
-
62
-
-
0025237625
-
-
H. Benedetti, R. Lloubes, C. Lazdunski, L. Letellier, EMBO J. 11, 441 (1992); V. Braun, J. Frenz, K. Hantke, K. Schaller, J. Bacteriol. 142, 162 (1980); D. Baty et al., Biochimie 72, 123 (1990); M. Wisner, D. Freymann, P. Ghosh, R. M. Stroud, Nature 385, 481 (1997). Subsequent to OM penetration, pore-forming bacteriocins like colicin B remain associated with their OM receptors, but traverse the periplasm to form voltage-gated channels in the inner membrane that depolarize cellular energetics.
-
(1990)
Biochimie
, vol.72
, pp. 123
-
-
Baty, D.1
-
63
-
-
0026541379
-
-
H. Benedetti, R. Lloubes, C. Lazdunski, L. Letellier, EMBO J. 11, 441 (1992); V. Braun, J. Frenz, K. Hantke, K. Schaller, J. Bacteriol. 142, 162 (1980); D. Baty et al., Biochimie 72, 123 (1990); M. Wisner, D. Freymann, P. Ghosh, R. M. Stroud, Nature 385, 481 (1997). Subsequent to OM penetration, pore-forming bacteriocins like colicin B remain associated with their OM receptors, but traverse the periplasm to form voltage-gated channels in the inner membrane that depolarize cellular energetics.
-
(1997)
Nature
, vol.385
, pp. 481
-
-
Wisner, M.1
Freymann, D.2
Ghosh, P.3
Stroud, R.M.4
-
64
-
-
1842267184
-
-
Time-resolved changes in spin-label motion were analyzed and fitted with "Peak Fit" (Jandel Scientific, San Rafael, CA)
-
Time-resolved changes in spin-label motion were analyzed and fitted with "Peak Fit" (Jandel Scientific, San Rafael, CA).
-
-
-
-
65
-
-
1842350845
-
-
10 cells. Thus, even after 20 min in the presence of ferric enterobactin, the bacteria remained saturated with the siderophore
-
10 cells. Thus, even after 20 min in the presence of ferric enterobactin, the bacteria remained saturated with the siderophore.
-
-
-
-
66
-
-
1842313396
-
-
note
-
9 cells (8). In such iron-deficient conditions, the bacteria contained 80,000 to 100,000 FepA proteins per cell (8). The FepA turnover number for ferric enter-obactin, calculated from these data as one molecule per minute per FepA monomer, compares well with the 5-min motion cycle seen in Fig. 5, especially because the transport measurements were made in exponentially growing bacteria. In the spectrometer cavity, the bacteria were rapidly shifted (in 90 s) from a state of dormancy at 4°C to active transport at 37°C.
-
-
-
-
67
-
-
1842341191
-
-
note
-
3+ is itself paramagnetic, and may therefore undergo dipole-dipole interactions with the nitroxide spin labels. Dipolar effects from ferric iron, however, exert a broadening effect on nitroxide spectra, opposite to the results we observed in FepA in vivo. Such dipolar interactions, furthermore, are not expected to manifest either TonB-or energy dependence.
-
-
-
-
70
-
-
1842315219
-
-
Bacteria in a 100-μl quartz flat cell were cooled to 4°C or warmed to 37°C in the resonator cavity. The temperatures in the cavity were calibrated and monitored with a thermometer
-
Bacteria in a 100-μl quartz flat cell were cooled to 4°C or warmed to 37°C in the resonator cavity. The temperatures in the cavity were calibrated and monitored with a thermometer.
-
-
-
-
72
-
-
1842356801
-
-
We thank Y. Kotake at the ESR Center of the Oklahoma Medical Research Foundation and E. E. Klebba for helpful discussions and J. Liu, C. Murphy, B. Kalyanaraman, and P. Cook for their comments on the manuscript. Supported by grants from NSF (MCB9212070 and CHE9512996 to P.E.K.) and NIH (GM53836 to P.E.K. and GM51339 to J.B.F.)
-
We thank Y. Kotake at the ESR Center of the Oklahoma Medical Research Foundation and E. E. Klebba for helpful discussions and J. Liu, C. Murphy, B. Kalyanaraman, and P. Cook for their comments on the manuscript. Supported by grants from NSF (MCB9212070 and CHE9512996 to P.E.K.) and NIH (GM53836 to P.E.K. and GM51339 to J.B.F.).
-
-
-
|