메뉴 건너뛰기




Volumn 278, Issue 5336, 1997, Pages 286-290

Structure-based analysis of catalysis and substrate definition in the HIT protein family

Author keywords

[No Author keywords available]

Indexed keywords

HISTIDINE; HYDROLASE; PROTEIN; PROTEIN KINASE C; TRANSFERASE;

EID: 0030831990     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.278.5336.286     Document Type: Article
Times cited : (197)

References (37)
  • 1
    • 0027012508 scopus 로고
    • B. Seraphin, J. DNA Seq. 3, 177 (1992); K. Robinson and A. Aitken, Biochem. J. 304, 662 (1994).
    • (1992) J. DNA Seq. , vol.3 , pp. 177
    • Seraphin, B.1
  • 2
  • 3
  • 5
    • 13344279424 scopus 로고    scopus 로고
    • M. Ohta et al., Cell 84, 587 (1996). References to subsequent studies of the FHIT locus as related to human cancer can be found in (2).
    • (1996) Cell , vol.84 , pp. 587
    • Ohta, M.1
  • 8
    • 0029840316 scopus 로고    scopus 로고
    • A. K. Robinson, C. E. Pena, L. D. Barnes, Biochim. Biophys. Acta 1161, 139 (1993); L. D. Barnes et al., Biochemistry 36, 11529 (1996).
    • (1996) Biochemistry , vol.36 , pp. 11529
    • Barnes, L.D.1
  • 9
    • 1842285115 scopus 로고    scopus 로고
    • note
    • A systematic approach was used to identify adenosine as the nucleoside with highest affinity for the binding site by soaking pairs of various nucleoside molecules into the crystal in equal concentrations (∼0.1 to 1.0 mM), collecting data, and observing density in the binding site. Adenosine nucleosides were always found to bind to PKCI with higher affinity than any other nucleoside.
  • 10
    • 1842264582 scopus 로고    scopus 로고
    • note
    • 5A hydrolysis for FHIT.
  • 11
    • 0026347515 scopus 로고
    • Y. F. Wei and H. R. Matthews, Methods Enzymol. 200, 388 (1991); S. J. Pilkis et al., J. Biol. Chem. 258, 6135 (1983); C. A. Hasemann, E. S. Istvan, K. Uyeda, J. Deisenhofer, Structure 4, 1017 (1996); Z. B. Rose, Methods Enzymol. 87, 42 (1982); S. H. Thrall, A. F. Mehl, L. J. Carroll, D. Dunaway-Marino, Biochemistry 32, 1803 (1983); S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, ibid. 34, 11062 (1995); J. E. Wedekind, P. A. Frey, I. Rayment, ibid. 35, 11560 (1996).
    • (1991) Methods Enzymol. , vol.200 , pp. 388
    • Wei, Y.F.1    Matthews, H.R.2
  • 12
    • 0021111990 scopus 로고
    • Y. F. Wei and H. R. Matthews, Methods Enzymol. 200, 388 (1991); S. J. Pilkis et al., J. Biol. Chem. 258, 6135 (1983); C. A. Hasemann, E. S. Istvan, K. Uyeda, J. Deisenhofer, Structure 4, 1017 (1996); Z. B. Rose, Methods Enzymol. 87, 42 (1982); S. H. Thrall, A. F. Mehl, L. J. Carroll, D. Dunaway-Marino, Biochemistry 32, 1803 (1983); S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, ibid. 34, 11062 (1995); J. E. Wedekind, P. A. Frey, I. Rayment, ibid. 35, 11560 (1996).
    • (1983) J. Biol. Chem. , vol.258 , pp. 6135
    • Pilkis, S.J.1
  • 13
    • 0030587517 scopus 로고    scopus 로고
    • Y. F. Wei and H. R. Matthews, Methods Enzymol. 200, 388 (1991); S. J. Pilkis et al., J. Biol. Chem. 258, 6135 (1983); C. A. Hasemann, E. S. Istvan, K. Uyeda, J. Deisenhofer, Structure 4, 1017 (1996); Z. B. Rose, Methods Enzymol. 87, 42 (1982); S. H. Thrall, A. F. Mehl, L. J. Carroll, D. Dunaway-Marino, Biochemistry 32, 1803 (1983); S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, ibid. 34, 11062 (1995); J. E. Wedekind, P. A. Frey, I. Rayment, ibid. 35, 11560 (1996).
    • (1996) Structure , vol.4 , pp. 1017
    • Hasemann, C.A.1    Istvan, E.S.2    Uyeda, K.3    Deisenhofer, J.4
  • 14
    • 0020391391 scopus 로고
    • Y. F. Wei and H. R. Matthews, Methods Enzymol. 200, 388 (1991); S. J. Pilkis et al., J. Biol. Chem. 258, 6135 (1983); C. A. Hasemann, E. S. Istvan, K. Uyeda, J. Deisenhofer, Structure 4, 1017 (1996); Z. B. Rose, Methods Enzymol. 87, 42 (1982); S. H. Thrall, A. F. Mehl, L. J. Carroll, D. Dunaway-Marino, Biochemistry 32, 1803 (1983); S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, ibid. 34, 11062 (1995); J. E. Wedekind, P. A. Frey, I. Rayment, ibid. 35, 11560 (1996).
    • (1982) Methods Enzymol. , vol.87 , pp. 42
    • Rose, Z.B.1
  • 15
    • 0027407942 scopus 로고
    • Y. F. Wei and H. R. Matthews, Methods Enzymol. 200, 388 (1991); S. J. Pilkis et al., J. Biol. Chem. 258, 6135 (1983); C. A. Hasemann, E. S. Istvan, K. Uyeda, J. Deisenhofer, Structure 4, 1017 (1996); Z. B. Rose, Methods Enzymol. 87, 42 (1982); S. H. Thrall, A. F. Mehl, L. J. Carroll, D. Dunaway-Marino, Biochemistry 32, 1803 (1983); S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, ibid. 34, 11062 (1995); J. E. Wedekind, P. A. Frey, I. Rayment, ibid. 35, 11560 (1996).
    • (1983) Biochemistry , vol.32 , pp. 1803
    • Thrall, S.H.1    Mehl, A.F.2    Carroll, L.J.3    Dunaway-Marino, D.4
  • 16
    • 0029154302 scopus 로고
    • Y. F. Wei and H. R. Matthews, Methods Enzymol. 200, 388 (1991); S. J. Pilkis et al., J. Biol. Chem. 258, 6135 (1983); C. A. Hasemann, E. S. Istvan, K. Uyeda, J. Deisenhofer, Structure 4, 1017 (1996); Z. B. Rose, Methods Enzymol. 87, 42 (1982); S. H. Thrall, A. F. Mehl, L. J. Carroll, D. Dunaway-Marino, Biochemistry 32, 1803 (1983); S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, ibid. 34, 11062 (1995); J. E. Wedekind, P. A. Frey, I. Rayment, ibid. 35, 11560 (1996).
    • (1995) Biochemistry , vol.34 , pp. 11062
    • Morera, S.1    Chiadmi, M.2    LeBras, G.3    Lascu, I.4    Janin, J.5
  • 17
    • 0029810819 scopus 로고    scopus 로고
    • Y. F. Wei and H. R. Matthews, Methods Enzymol. 200, 388 (1991); S. J. Pilkis et al., J. Biol. Chem. 258, 6135 (1983); C. A. Hasemann, E. S. Istvan, K. Uyeda, J. Deisenhofer, Structure 4, 1017 (1996); Z. B. Rose, Methods Enzymol. 87, 42 (1982); S. H. Thrall, A. F. Mehl, L. J. Carroll, D. Dunaway-Marino, Biochemistry 32, 1803 (1983); S. Morera, M. Chiadmi, G. LeBras, I. Lascu, J. Janin, ibid. 34, 11062 (1995); J. E. Wedekind, P. A. Frey, I. Rayment, ibid. 35, 11560 (1996).
    • (1996) Biochemistry , vol.35 , pp. 11560
    • Wedekind, J.E.1    Frey, P.A.2    Rayment, I.3
  • 18
    • 0019332581 scopus 로고
    • 3H). A similar approach was used to trap covalent phosphotyrosine intermediates in topoisomerase reactions [Y.-C. Tse-Dinh, K. Kirkegaard, J. Wang, J. Biol. Chem. 255, 5560 (1980)]. Radioactive labeling was coincident with the position of FHIT in SDS-PAGE.
    • (1980) J. Biol. Chem. , vol.255 , pp. 5560
    • Tse-Dinh, Y.-C.1    Kirkegaard, K.2    Wang, J.3
  • 19
    • 0031045336 scopus 로고    scopus 로고
    • 12) and was solved using a partial model (3) in molecular replacement with AMORE [J. Navaza, Acta Crystallogr. A50, 157 (1994)] and modeled with the program O [T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991)]. Isomorphous, related space groups were solved by a similar approach in AMORE. All models were refined with X-Plor using the cross-validation test [A. T. Brünger, J. Kuriyan, M. Karplus, Science 235, 458 (1987); A. T. Brünger, Nature 355, 472 (1992)]. Each FHIT model roughly includes residues 2 to 108 and 125 to 147. Each PKCI model roughly includes residues 14 to 126. Occupancies for the a and β tung-state molecules refined to 0.50 and 0.54, respectively, for PKCI and to 0.47 for FHIT.
    • (1997) Methods Enzymol. , vol.276 , pp. 244
    • Westbrook, E.M.1    Naday, I.2
  • 20
    • 1842277323 scopus 로고    scopus 로고
    • P. E. Bourne and K. Watenpaugh, Eds. SDSC Inc., San Diego, CA
    • 12) and was solved using a partial model (3) in molecular replacement with AMORE [J. Navaza, Acta Crystallogr. A50, 157 (1994)] and modeled with the program O [T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991)]. Isomorphous, related space groups were solved by a similar approach in AMORE. All models were refined with X-Plor using the cross-validation test [A. T. Brünger, J. Kuriyan, M. Karplus, Science 235, 458 (1987); A. T. Brünger, Nature 355, 472 (1992)]. Each FHIT model roughly includes residues 2 to 108 and 125 to 147. Each PKCI model roughly includes residues 14 to 126. Occupancies for the a and β tung-state molecules refined to 0.50 and 0.54, respectively, for PKCI and to 0.47 for FHIT.
    • (1996) Proceedings of IUCr Computing School
    • Westbrook, M.L.1    Coleman, T.A.2    Daley, R.T.3    Pflugrath, J.W.4
  • 21
    • 0031059866 scopus 로고    scopus 로고
    • 12) and was solved using a partial model (3) in molecular replacement with AMORE [J. Navaza, Acta Crystallogr. A50, 157 (1994)] and modeled with the program O [T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991)]. Isomorphous, related space groups were solved by a similar approach in AMORE. All models were refined with X-Plor using the cross-validation test [A. T. Brünger, J. Kuriyan, M. Karplus, Science 235, 458 (1987); A. T. Brünger, Nature 355, 472 (1992)]. Each FHIT model roughly includes residues 2 to 108 and 125 to 147. Each PKCI model roughly includes residues 14 to 126. Occupancies for the a and β tung-state molecules refined to 0.50 and 0.54, respectively, for PKCI and to 0.47 for FHIT.
    • (1997) Methods Enzymol. , vol.276 , pp. 307
    • Otwinowski, Z.1    Minor, W.2
  • 22
    • 84920325457 scopus 로고
    • 12) and was solved using a partial model (3) in molecular replacement with AMORE [J. Navaza, Acta Crystallogr. A50, 157 (1994)] and modeled with the program O [T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991)]. Isomorphous, related space groups were solved by a similar approach in AMORE. All models were refined with X-Plor using the cross-validation test [A. T. Brünger, J. Kuriyan, M. Karplus, Science 235, 458 (1987); A. T. Brünger, Nature 355, 472 (1992)]. Each FHIT model roughly includes residues 2 to 108 and 125 to 147. Each PKCI model roughly includes residues 14 to 126. Occupancies for the a and β tung-state molecules refined to 0.50 and 0.54, respectively, for PKCI and to 0.47 for FHIT.
    • (1994) Acta Crystallogr. , vol.A50 , pp. 157
    • Navaza, J.1
  • 23
    • 84889120137 scopus 로고
    • 12) and was solved using a partial model (3) in molecular replacement with AMORE [J. Navaza, Acta Crystallogr. A50, 157 (1994)] and modeled with the program O [T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991)]. Isomorphous, related space groups were solved by a similar approach in AMORE. All models were refined with X-Plor using the cross-validation test [A. T. Brünger, J. Kuriyan, M. Karplus, Science 235, 458 (1987); A. T. Brünger, Nature 355, 472 (1992)]. Each FHIT model roughly includes residues 2 to 108 and 125 to 147. Each PKCI model roughly includes residues 14 to 126. Occupancies for the a and β tung-state molecules refined to 0.50 and 0.54, respectively, for PKCI and to 0.47 for FHIT.
    • (1991) Acta Crystallogr. , vol.A47 , pp. 110
    • Jones, T.A.1    Zou, J.Y.2    Cowan, S.W.3    Kjeldgaard, M.4
  • 24
    • 0023140814 scopus 로고
    • 12) and was solved using a partial model (3) in molecular replacement with AMORE [J. Navaza, Acta Crystallogr. A50, 157 (1994)] and modeled with the program O [T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991)]. Isomorphous, related space groups were solved by a similar approach in AMORE. All models were refined with X-Plor using the cross-validation test [A. T. Brünger, J. Kuriyan, M. Karplus, Science 235, 458 (1987); A. T. Brünger, Nature 355, 472 (1992)]. Each FHIT model roughly includes residues 2 to 108 and 125 to 147. Each PKCI model roughly includes residues 14 to 126. Occupancies for the a and β tung-state molecules refined to 0.50 and 0.54, respectively, for PKCI and to 0.47 for FHIT.
    • (1987) Science , vol.235 , pp. 458
    • Brünger, A.T.1    Kuriyan, J.2    Karplus, M.3
  • 25
    • 0026597444 scopus 로고
    • 12) and was solved using a partial model (3) in molecular replacement with AMORE [J. Navaza, Acta Crystallogr. A50, 157 (1994)] and modeled with the program O [T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991)]. Isomorphous, related space groups were solved by a similar approach in AMORE. All models were refined with X-Plor using the cross-validation test [A. T. Brünger, J. Kuriyan, M. Karplus, Science 235, 458 (1987); A. T. Brünger, Nature 355, 472 (1992)]. Each FHIT model roughly includes residues 2 to 108 and 125 to 147. Each PKCI model roughly includes residues 14 to 126. Occupancies for the a and β tung-state molecules refined to 0.50 and 0.54, respectively, for PKCI and to 0.47 for FHIT.
    • (1992) Nature , vol.355 , pp. 472
    • Brünger, A.T.1
  • 26
    • 0021866417 scopus 로고
    • Vanadate and molybdate pentacovalent metal sites were identified in structures of chloroperoxidase, rat acid phosphatase, bovine low - molecular weight phosphotyrosyl phosphatase, ribonuclease A, and a vanadate-ADP transition-state complex of S1 myosin [B. Borah et al., Biochemistry 24, 2058 (1985); Y. Lindqvist, G. Schneider, P. Vihko, Eur. J. Biochem. 221, 139 (1994); A. Messerschmidt and R. Wever, Proc. Natl. Acad. Sci. U.S.A. 93, 392 (1996); C. A. Smith and I. Rayment, Biochemistry 35, 5404 (1996); A. Wlodawer, M. Miller, L. Sjolin, Proc. Natl. Acad. Sci. U.S.A. 80, 3628 (1983); M. Zhang, M. Zhou, R. L. Van Etten, C. V. Stauffacher, Biochemistry 36, 15 (1997)]. The active sites of PKCI and FHIT share several structural similarities and characteristics with protein phosphatases, particularly rat acid phosphatase. A search of the small-molecule database revealed a pentacovalent tungstate structure with similar characteristics to those observed in our enzyme complex [I. Feinstein-Jaffe, J. C. Dewan, R. R. Schrock, Organometallics 4, 1189 (1985)]. The bond lengths and angles observed in our crystal structures are in agreement with those observed in several other tungsten-containing molecules found in the database. We know of no reported protein structure that describes a similar pentacovalent tungstate complex.
    • (1985) Biochemistry , vol.24 , pp. 2058
    • Borah, B.1
  • 27
    • 0028262202 scopus 로고
    • Vanadate and molybdate pentacovalent metal sites were identified in structures of chloroperoxidase, rat acid phosphatase, bovine low - molecular weight phosphotyrosyl phosphatase, ribonuclease A, and a vanadate-ADP transition-state complex of S1 myosin [B. Borah et al., Biochemistry 24, 2058 (1985); Y. Lindqvist, G. Schneider, P. Vihko, Eur. J. Biochem. 221, 139 (1994); A. Messerschmidt and R. Wever, Proc. Natl. Acad. Sci. U.S.A. 93, 392 (1996); C. A. Smith and I. Rayment, Biochemistry 35, 5404 (1996); A. Wlodawer, M. Miller, L. Sjolin, Proc. Natl. Acad. Sci. U.S.A. 80, 3628 (1983); M. Zhang, M. Zhou, R. L. Van Etten, C. V. Stauffacher, Biochemistry 36, 15 (1997)]. The active sites of PKCI and FHIT share several structural similarities and characteristics with protein phosphatases, particularly rat acid phosphatase. A search of the small-molecule database revealed a pentacovalent tungstate structure with similar characteristics to those observed in our enzyme complex [I. Feinstein-Jaffe, J. C. Dewan, R. R. Schrock, Organometallics 4, 1189 (1985)]. The bond lengths and angles observed in our crystal structures are in agreement with those observed in several other tungsten-containing molecules found in the database. We know of no reported protein structure that describes a similar pentacovalent tungstate complex.
    • (1994) Eur. J. Biochem. , vol.221 , pp. 139
    • Lindqvist, Y.1    Schneider, G.2    Vihko, P.3
  • 28
    • 0030061093 scopus 로고    scopus 로고
    • Vanadate and molybdate pentacovalent metal sites were identified in structures of chloroperoxidase, rat acid phosphatase, bovine low - molecular weight phosphotyrosyl phosphatase, ribonuclease A, and a vanadate-ADP transition-state complex of S1 myosin [B. Borah et al., Biochemistry 24, 2058 (1985); Y. Lindqvist, G. Schneider, P. Vihko, Eur. J. Biochem. 221, 139 (1994); A. Messerschmidt and R. Wever, Proc. Natl. Acad. Sci. U.S.A. 93, 392 (1996); C. A. Smith and I. Rayment, Biochemistry 35, 5404 (1996); A. Wlodawer, M. Miller, L. Sjolin, Proc. Natl. Acad. Sci. U.S.A. 80, 3628 (1983); M. Zhang, M. Zhou, R. L. Van Etten, C. V. Stauffacher, Biochemistry 36, 15 (1997)]. The active sites of PKCI and FHIT share several structural similarities and characteristics with protein phosphatases, particularly rat acid phosphatase. A search of the small-molecule database revealed a pentacovalent tungstate structure with similar characteristics to those observed in our enzyme complex [I. Feinstein-Jaffe, J. C. Dewan, R. R. Schrock, Organometallics 4, 1189 (1985)]. The bond lengths and angles observed in our crystal structures are in agreement with those observed in several other tungsten-containing molecules found in the database. We know of no reported protein structure that describes a similar pentacovalent tungstate complex.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 392
    • Messerschmidt, A.1    Wever, R.2
  • 29
    • 0029960235 scopus 로고    scopus 로고
    • Vanadate and molybdate pentacovalent metal sites were identified in structures of chloroperoxidase, rat acid phosphatase, bovine low - molecular weight phosphotyrosyl phosphatase, ribonuclease A, and a vanadate-ADP transition-state complex of S1 myosin [B. Borah et al., Biochemistry 24, 2058 (1985); Y. Lindqvist, G. Schneider, P. Vihko, Eur. J. Biochem. 221, 139 (1994); A. Messerschmidt and R. Wever, Proc. Natl. Acad. Sci. U.S.A. 93, 392 (1996); C. A. Smith and I. Rayment, Biochemistry 35, 5404 (1996); A. Wlodawer, M. Miller, L. Sjolin, Proc. Natl. Acad. Sci. U.S.A. 80, 3628 (1983); M. Zhang, M. Zhou, R. L. Van Etten, C. V. Stauffacher, Biochemistry 36, 15 (1997)]. The active sites of PKCI and FHIT share several structural similarities and characteristics with protein phosphatases, particularly rat acid phosphatase. A search of the small-molecule database revealed a pentacovalent tungstate structure with similar characteristics to those observed in our enzyme complex [I. Feinstein-Jaffe, J. C. Dewan, R. R. Schrock, Organometallics 4, 1189 (1985)]. The bond lengths and angles observed in our crystal structures are in agreement with those observed in several other tungsten-containing molecules found in the database. We know of no reported protein structure that describes a similar pentacovalent tungstate complex.
    • (1996) Biochemistry , vol.35 , pp. 5404
    • Smith, C.A.1    Rayment, I.2
  • 30
    • 0020772531 scopus 로고
    • Vanadate and molybdate pentacovalent metal sites were identified in structures of chloroperoxidase, rat acid phosphatase, bovine low - molecular weight phosphotyrosyl phosphatase, ribonuclease A, and a vanadate-ADP transition-state complex of S1 myosin [B. Borah et al., Biochemistry 24, 2058 (1985); Y. Lindqvist, G. Schneider, P. Vihko, Eur. J. Biochem. 221, 139 (1994); A. Messerschmidt and R. Wever, Proc. Natl. Acad. Sci. U.S.A. 93, 392 (1996); C. A. Smith and I. Rayment, Biochemistry 35, 5404 (1996); A. Wlodawer, M. Miller, L. Sjolin, Proc. Natl. Acad. Sci. U.S.A. 80, 3628 (1983); M. Zhang, M. Zhou, R. L. Van Etten, C. V. Stauffacher, Biochemistry 36, 15 (1997)]. The active sites of PKCI and FHIT share several structural similarities and characteristics with protein phosphatases, particularly rat acid phosphatase. A search of the small-molecule database revealed a pentacovalent tungstate structure with similar characteristics to those observed in our enzyme complex [I. Feinstein-Jaffe, J. C. Dewan, R. R. Schrock, Organometallics 4, 1189 (1985)]. The bond lengths and angles observed in our crystal structures are in agreement with those observed in several other tungsten-containing molecules found in the database. We know of no reported protein structure that describes a similar pentacovalent tungstate complex.
    • (1983) Proc. Natl. Acad. Sci. U.S.A. , vol.80 , pp. 3628
    • Wlodawer, A.1    Miller, M.2    Sjolin, L.3
  • 31
    • 0031021981 scopus 로고    scopus 로고
    • Vanadate and molybdate pentacovalent metal sites were identified in structures of chloroperoxidase, rat acid phosphatase, bovine low - molecular weight phosphotyrosyl phosphatase, ribonuclease A, and a vanadate-ADP transition-state complex of S1 myosin [B. Borah et al., Biochemistry 24, 2058 (1985); Y. Lindqvist, G. Schneider, P. Vihko, Eur. J. Biochem. 221, 139 (1994); A. Messerschmidt and R. Wever, Proc. Natl. Acad. Sci. U.S.A. 93, 392 (1996); C. A. Smith and I. Rayment, Biochemistry 35, 5404 (1996); A. Wlodawer, M. Miller, L. Sjolin, Proc. Natl. Acad. Sci. U.S.A. 80, 3628 (1983); M. Zhang, M. Zhou, R. L. Van Etten, C. V. Stauffacher, Biochemistry 36, 15 (1997)]. The active sites of PKCI and FHIT share several structural similarities and characteristics with protein phosphatases, particularly rat acid phosphatase. A search of the small-molecule database revealed a pentacovalent tungstate structure with similar characteristics to those observed in our enzyme complex [I. Feinstein-Jaffe, J. C. Dewan, R. R. Schrock, Organometallics 4, 1189 (1985)]. The bond lengths and angles observed in our crystal structures are in agreement with those observed in several other tungsten-containing molecules found in the database. We know of no reported protein structure that describes a similar pentacovalent tungstate complex.
    • (1997) Biochemistry , vol.36 , pp. 15
    • Zhang, M.1    Zhou, M.2    Van Etten, R.L.3    Stauffacher, C.V.4
  • 32
    • 0006666554 scopus 로고
    • Vanadate and molybdate pentacovalent metal sites were identified in structures of chloroperoxidase, rat acid phosphatase, bovine low - molecular weight phosphotyrosyl phosphatase, ribonuclease A, and a vanadate-ADP transition-state complex of S1 myosin [B. Borah et al., Biochemistry 24, 2058 (1985); Y. Lindqvist, G. Schneider, P. Vihko, Eur. J. Biochem. 221, 139 (1994); A. Messerschmidt and R. Wever, Proc. Natl. Acad. Sci. U.S.A. 93, 392 (1996); C. A. Smith and I. Rayment, Biochemistry 35, 5404 (1996); A. Wlodawer, M. Miller, L. Sjolin, Proc. Natl. Acad. Sci. U.S.A. 80, 3628 (1983); M. Zhang, M. Zhou, R. L. Van Etten, C. V. Stauffacher, Biochemistry 36, 15 (1997)]. The active sites of PKCI and FHIT share several structural similarities and characteristics with protein phosphatases, particularly rat acid phosphatase. A search of the small-molecule database revealed a pentacovalent tungstate structure with similar characteristics to those observed in our enzyme complex [I. Feinstein-Jaffe, J. C. Dewan, R. R. Schrock, Organometallics 4, 1189 (1985)]. The bond lengths and angles observed in our crystal structures are in agreement with those observed in several other tungsten-containing molecules found in the database. We know of no reported protein structure that describes a similar pentacovalent tungstate complex.
    • (1985) Organometallics , vol.4 , pp. 1189
    • Feinstein-Jaffe, I.1    Dewan, J.C.2    Schrock, R.R.3
  • 33
    • 0030935327 scopus 로고    scopus 로고
    • L. Holm and C. Sander, Structure 15, 165 (1997); Trends Biochem. Sci. 22, 116 (1997).
    • (1997) Structure , vol.15 , pp. 165
    • Holm, L.1    Sander, C.2
  • 34
    • 0030940850 scopus 로고    scopus 로고
    • L. Holm and C. Sander, Structure 15, 165 (1997); Trends Biochem. Sci. 22, 116 (1997).
    • (1997) Trends Biochem. Sci. , vol.22 , pp. 116
  • 37
    • 1842363001 scopus 로고    scopus 로고
    • note
    • We thank the staffs of beamline X4A at the National Synchrotron Light Source (NSLS) and beamline 19-ID at the APS. We particularly thank members of the Hendrickson lab for helpful discussion, and especially C. Bingman for discussions about catalysis. We also thank the Pyle, McDermott, and Parkin labs for helpful discussions and for use of resources during the analysis of the catalytic intermediate. Beamline X4A at the NSLS, a U.S. Department of Energy facility, is supported by the Howard Hughes Medical Institute. Use of the APS was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research. The SBC is supported by the U.S. Department of Energy, Office of Health and Environmental Research, Office of Energy Research. Both the SBC and APS are supported under contract W-31-109-ENG-38. This work was supported in part by National Cancer Institute training grant T32CA09503 (M.G.K.) and by a Helen Hay Whitney Foundation Fellowship to C.D.L.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.