-
2
-
-
0027418132
-
-
B. A. Eipper, S. L. Milgram, E. J. Husten, H.-Y. Yun, R. E. Mains, Protein Sci. 2, 489 (1993).
-
(1993)
Protein Sci.
, vol.2
, pp. 489
-
-
Eipper, B.A.1
Milgram, S.L.2
Husten, E.J.3
Yun, H.-Y.4
Mains, R.E.5
-
5
-
-
0029797222
-
-
In Cnidarians (coral, jellyfish, sea anemones), the lowest animal group having a nervous system, most of the neurotransmitters identified are amidated peptides, suggesting that archetypal nervous systems may have relied on amidated peptides [C. J. P. Grimmelikhuijzen, I. Leviev, K. Carstensen, Int. Rev. Cytol. 167, 37 (1996)].
-
(1996)
Int. Rev. Cytol.
, vol.167
, pp. 37
-
-
Grimmelikhuijzen, C.J.P.1
Leviev, I.2
Carstensen, K.3
-
9
-
-
0027401014
-
-
K. Suzuki, M. Ohta, M. Okamoto, Y. Nishikawa, Eur. J. Biochem. 213, 93 (1993).
-
(1993)
Eur. J. Biochem.
, vol.213
, pp. 93
-
-
Suzuki, K.1
Ohta, M.2
Okamoto, M.3
Nishikawa, Y.4
-
10
-
-
0028913562
-
-
B. A. Eipper, A. S. W. Quon, R. E. Mains, J. S. Boswell, N. J. Blackburn, Biochemistry 34, 2857 (1995).
-
(1995)
Biochemistry
, vol.34
, pp. 2857
-
-
Eipper, B.A.1
Quon, A.S.W.2
Mains, R.E.3
Boswell, J.S.4
Blackburn, N.J.5
-
15
-
-
15444355843
-
-
note
-
When the two PHMcc domains are structurally aligned, the rms distance between 86 residues (α carbons) of each domain is 1.5 Å, indicating that PHM may have arisen from a gene-duplication event. Two β bulges in domain I (in strands 4 and 7) align with β bulges in domain II (in strands 14 and 16). Although the two domains are topologically identical, their sequence identity is only 4%; none of the disulfide-forming cysteines or Cu ligands is conserved, and the coppers are bound on opposite sides of the β-sandwich domains. Domains with this jelly-roll topology are found in viral capsid proteins, lectins, and glucanases.
-
-
-
-
16
-
-
15444349643
-
-
note
-
The nomenclature for the two active site coppers is based on spectroscopic studies (20, 21) of PHM and DBM. In both enzymes, one of the coppers (designated CuB) has a sulfur ligand, whereas the other (CuA) does not.
-
-
-
-
17
-
-
0030766385
-
-
A. S. Kolhekar, H. T. Keutmann, R. E. Mains, A. S. W. Quon, B. A. Eipper, Biochemistry 36, 10901 (1997).
-
(1997)
Biochemistry
, vol.36
, pp. 10901
-
-
Kolhekar, A.S.1
Keutmann, H.T.2
Mains, R.E.3
Quon, A.S.W.4
Eipper, B.A.5
-
19
-
-
15444359021
-
-
note
-
The coordination geometry of CuA is also consistent with square planar geometry, but absorption edge features strongly associated with square planar geometry are absent in XAS data from oxidized PHM (20).
-
-
-
-
20
-
-
0029739477
-
-
J. S. Boswell, B. J. Reedy, R. Kulathila, D. Merkler, N. J. Blackburn, Biochemistry 35, 12241 (1996).
-
(1996)
Biochemistry
, vol.35
, pp. 12241
-
-
Boswell, J.S.1
Reedy, B.J.2
Kulathila, R.3
Merkler, D.4
Blackburn, N.J.5
-
22
-
-
0017411710
-
-
The coordination of CuA may include two solvent ligands, in addition to the three histidines. Many proteins in the Protein Data Bank [T. Bernstein et al., J. Mol. Biol. 112, 535 (1977)] contain Cu binding sites composed solely of histidine and solvent ligands (for example, Cu or Zn Superoxide dismutase, ascorbate oxidase, and hemocyanin). All of these Cu sites are molecular oxygen acceptors, either for oxidoreductase activity or oxygen transport. The coordination of CuB is most similar to type I Cu sites, which are typically composed of two histidines, one methionine, and one cysteine (for example, cupredoxins, ascorbate oxidase, ceruloplasmin, and Cu nitrite reductase). Type I Cu sites function as electron transfer sites. As observed in PHMcc, the bond length of the Cu-methionine bond in type I Cu sites is long (2.4 to 3.4 Å).
-
(1977)
J. Mol. Biol.
, vol.112
, pp. 535
-
-
Bernstein, T.1
-
23
-
-
15444349149
-
-
note
-
m ≈ μM).
-
-
-
-
24
-
-
15444348766
-
-
note
-
EXAFS experiments with reduced, anaerobic PAM found that M314 became more rigid (lower DebyeWaller factor) upon binding of peptidylglycine substrate (20).
-
-
-
-
27
-
-
0028936796
-
-
D. J. Merkler, R. Kulathila, D. E. Ash, Arch. Biochem. Biophys. 317, 93 (1995); J. S. Kizer et al., Endocrinology 25, 2262 (1986); S. E. Ramer, H. Cheng, M. M. Palcic, J. C. Vederas, J. Am. Chem. Soc. 110, 8526 (1988); D. Ping, A, G. Katopodis, S. W. May, ibid. 114, 3998 (1992); P. F. Fitzpatrick and J. J. Villafranca, J. Biol. Chem. 261, 4510 (1986); A. R. Battersby, P. W. Sheldrake, J. Staunton, D. C. Williams, J. Chem. Soc. Perkin I, 1056 (1976).
-
(1995)
Arch. Biochem. Biophys.
, vol.317
, pp. 93
-
-
Merkler, D.J.1
Kulathila, R.2
Ash, D.E.3
-
28
-
-
0022541805
-
-
D. J. Merkler, R. Kulathila, D. E. Ash, Arch. Biochem. Biophys. 317, 93 (1995); J. S. Kizer et al., Endocrinology 25, 2262 (1986); S. E. Ramer, H. Cheng, M. M. Palcic, J. C. Vederas, J. Am. Chem. Soc. 110, 8526 (1988); D. Ping, A, G. Katopodis, S. W. May, ibid. 114, 3998 (1992); P. F. Fitzpatrick and J. J. Villafranca, J. Biol. Chem. 261, 4510 (1986); A. R. Battersby, P. W. Sheldrake, J. Staunton, D. C. Williams, J. Chem. Soc. Perkin I, 1056 (1976).
-
(1986)
Endocrinology
, vol.25
, pp. 2262
-
-
Kizer, J.S.1
-
29
-
-
0000770470
-
-
D. J. Merkler, R. Kulathila, D. E. Ash, Arch. Biochem. Biophys. 317, 93 (1995); J. S. Kizer et al., Endocrinology 25, 2262 (1986); S. E. Ramer, H. Cheng, M. M. Palcic, J. C. Vederas, J. Am. Chem. Soc. 110, 8526 (1988); D. Ping, A, G. Katopodis, S. W. May, ibid. 114, 3998 (1992); P. F. Fitzpatrick and J. J. Villafranca, J. Biol. Chem. 261, 4510 (1986); A. R. Battersby, P. W. Sheldrake, J. Staunton, D. C. Williams, J. Chem. Soc. Perkin I, 1056 (1976).
-
(1988)
J. Am. Chem. Soc.
, vol.110
, pp. 8526
-
-
Ramer, S.E.1
Cheng, H.2
Palcic, M.M.3
Vederas, J.C.4
-
30
-
-
0000703163
-
-
D. J. Merkler, R. Kulathila, D. E. Ash, Arch. Biochem. Biophys. 317, 93 (1995); J. S. Kizer et al., Endocrinology 25, 2262 (1986); S. E. Ramer, H. Cheng, M. M. Palcic, J. C. Vederas, J. Am. Chem. Soc. 110, 8526 (1988); D. Ping, A, G. Katopodis, S. W. May, ibid. 114, 3998 (1992); P. F. Fitzpatrick and J. J. Villafranca, J. Biol. Chem. 261, 4510 (1986); A. R. Battersby, P. W. Sheldrake, J. Staunton, D. C. Williams, J. Chem. Soc. Perkin I, 1056 (1976).
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 3998
-
-
Ping, D.1
Katopodis, A.G.2
May, S.W.3
-
31
-
-
0023002228
-
-
D. J. Merkler, R. Kulathila, D. E. Ash, Arch. Biochem. Biophys. 317, 93 (1995); J. S. Kizer et al., Endocrinology 25, 2262 (1986); S. E. Ramer, H. Cheng, M. M. Palcic, J. C. Vederas, J. Am. Chem. Soc. 110, 8526 (1988); D. Ping, A, G. Katopodis, S. W. May, ibid. 114, 3998 (1992); P. F. Fitzpatrick and J. J. Villafranca, J. Biol. Chem. 261, 4510 (1986); A. R. Battersby, P. W. Sheldrake, J. Staunton, D. C. Williams, J. Chem. Soc. Perkin I, 1056 (1976).
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 4510
-
-
Fitzpatrick, P.F.1
Villafranca, J.J.2
-
32
-
-
0016905587
-
-
D. J. Merkler, R. Kulathila, D. E. Ash, Arch. Biochem. Biophys. 317, 93 (1995); J. S. Kizer et al., Endocrinology 25, 2262 (1986); S. E. Ramer, H. Cheng, M. M. Palcic, J. C. Vederas, J. Am. Chem. Soc. 110, 8526 (1988); D. Ping, A, G. Katopodis, S. W. May, ibid. 114, 3998 (1992); P. F. Fitzpatrick and J. J. Villafranca, J. Biol. Chem. 261, 4510 (1986); A. R. Battersby, P. W. Sheldrake, J. Staunton, D. C. Williams, J. Chem. Soc. Perkin I, 1056 (1976).
-
(1976)
J. Chem. Soc. Perkin
, vol.1
, pp. 1056
-
-
Battersby, A.R.1
Sheldrake, P.W.2
Staunton, J.3
Williams, D.C.4
-
35
-
-
15444345033
-
-
note
-
This pH corresponds to the pH optimum of rat PHM (2, 7) and also is the pH of the crystallization buffers used for the structures described in this work.
-
-
-
-
36
-
-
15444348418
-
-
note
-
max (37). R240 is conserved among PHM sequences; in DBM sequences, R240 is replaced by a conserved glutamine.
-
-
-
-
39
-
-
15444342563
-
-
note
-
Crude modeling indicates that interdomain motion in PHMcc could be of two types: hinge motion and shear motion. Hinge motion brings CuA and CuB no closer than 8 Å, but creates new interdomain contacts that may facilitate electron transfer. Shear motion is required to further reduce the distance between CuA and CuB, but in doing so, the interdomain interfaces become increasingly mismatched.
-
-
-
-
40
-
-
0023748630
-
-
R. A. Scott, R. J. Sullivan, W. E. DeWolf Jr., R. E. Dolle, L. I. Kruse, Biochemistry 27, 5411 (1988).
-
(1988)
Biochemistry
, vol.27
, pp. 5411
-
-
Scott, R.A.1
Sullivan, R.J.2
DeWolf Jr., W.E.3
Dolle, R.E.4
Kruse, L.I.5
-
42
-
-
0345060761
-
-
M. D. Newton, J. Electroanal. Chem. 5025, 1 (1997); Chem. Rev. 91, 767 (1991).
-
(1991)
Chem. Rev.
, vol.91
, pp. 767
-
-
-
43
-
-
15444344391
-
-
S. T. Prigge, A. S. Kolhekar, B. A. Eipper, R. E. Mains, L. M. Amzel, data not shown
-
S. T. Prigge, A. S. Kolhekar, B. A. Eipper, R. E. Mains, L. M. Amzel, data not shown.
-
-
-
-
44
-
-
0002452464
-
-
L. Sawyer, N. Isaacs, S. Bailey, Eds. Science and Engineering Research Council, Daresbury Laboratory. Warrington, UK
-
Z. Otwinowski, in Data Collection and Processing, L. Sawyer, N. Isaacs, S. Bailey, Eds. (Science and Engineering Research Council, Daresbury Laboratory. Warrington, UK, 1993), pp. 56-62.
-
(1993)
Data Collection and Processing
, pp. 56-62
-
-
Otwinowski, Z.1
-
46
-
-
15444338810
-
-
note
-
280) of 20 units.
-
-
-
-
47
-
-
15444341590
-
-
note
-
3, 100 mM dimethylarsinic acid (pH 5.5) at 25°C produced crystals of final dimensions 0.4 mm by 0.1 mm by 0.1 mm over 2 to 4 weeks. Crystals were enlarged to dimensions of 0.8 mm by 0.2 mm by 0.2 mm through macroseeding.
-
-
-
-
48
-
-
15444359420
-
-
note
-
Beamline X4A at the National Synchrotron Light Source (NSLS), a U.S. Department of Energy (DOE) facility, is supported by the Howard Hughes Medical Institute. The Stanford Synchrotron Radiation Laboratory (SSRL) is funded by the DOE, Office of Basic Energy Sciences. The Biotechnology Program is supported by the NIH, Biomedical Research Technology Program, Division of Research Resources. Further support is provided by the DOE, Office of Health and Environmental Research.
-
-
-
-
49
-
-
15444339196
-
-
note
-
4, 100 mM dimethylarsinic acid, 30% (v/v) glycerol] and flash frozen in a 1-mm loop of 11 gauge ethylon surgical fiber in a stream of nitrogen gas (100 K). Four data sets were collected at different x-ray energies at or near the K absorption edge of Cu with the crystal oriented such that Bijvoet pairs could be collected simultaneously. The four data sets were collected in parallel in groups of four 150-s exposures to minimize scaling problems between the data sets.
-
-
-
-
51
-
-
15444343119
-
-
note
-
The Cu anomalous signal was enhanced by the presence of a third Cu (from the crystallization conditions) at a crystal contact site.
-
-
-
-
52
-
-
26744476315
-
-
Collaborative Computation Project 4, Acta Crystallogr. D50, 750 (1994).
-
(1994)
Acta Crystallogr.
, vol.D50
, pp. 750
-
-
-
53
-
-
84889120137
-
-
A. T. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, ibid. A47, 110 (1991).
-
(1991)
Acta Crystallogr.
, vol.A47
, pp. 110
-
-
Jones, A.T.1
Zou, J.Y.2
Cowan, S.W.3
Kjeldgaard, M.4
-
54
-
-
15444354767
-
-
note
-
High-resolution data were collected on an R-axis llc detector with CuKα radiation from a Rigaku RU200 rotating anode and processed in DENZO and SCALEPACK (38).
-
-
-
-
55
-
-
15444342680
-
-
note
-
native) to be calculated with native phases. The substrate iodine positions were deduced from this map contoured at 7σ and the other substrate atoms were built into lower levels of difference density. The PHMcc-substrate structure was refined in X-PLOR-3.8 (39) beginning with native phases.
-
-
-
-
57
-
-
15444342872
-
-
note
-
We thank C. Ogata and the staff at beamline X-4A for assistance during data collection at the NSLS; H. Bellamy and P. Phizackerly for assistance during data collection at beamline 1-5 at the SSRL; Y. Pan, S. Gabelli, M. Bianchet, K. Lee, G. Bains, M. Faig, D. Medjahed, and K. Doctor for assistance during synchrotron data collection; T. Hand for constructing the R240Q mutant; H. Wu and the Hendrickson group for the MADSYS suite of programs; and D. Leahy, J. Berg, and A. Mildvan for discussions or critical review of this manuscript. Supported by NIH grants DK32949 (B.A.E and R.E.M.) and GM44692 (L.M.A.). The coordinates for PHMcc have been deposited in the Protein Data Bank (accession number 1 PHM).
-
-
-
|