메뉴 건너뛰기




Volumn 6, Issue 2, 1996, Pages 146-150

DNA repair and transcription

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIN DEPENDENT KINASE; CYCLINE; DNA; DNA BINDING PROTEIN; RNA POLYMERASE II; TRANSCRIPTION FACTOR;

EID: 0030010367     PISSN: 0959437X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-437X(96)80043-8     Document Type: Article
Times cited : (21)

References (60)
  • 6
    • 0028349469 scopus 로고
    • Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast
    • Wang Z, Svejstrup JQ, Feaver WJ, Wu X, Kornberg RD, Friedberg EC: Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature 1994, 368:74-76. The authors demonstrate, by using an in vitro NER assay, that defective NER in rad3 mutant yeast extracts is complemented by purified factor b (TFIIH in yeast) but not Rad3 protein alone. This observation supports the notion that Rad3 is present in a tight complex within TFIIH. Furthermore, the results support a direct role of TFIIH during NER.
    • (1994) Nature , vol.368 , pp. 74-76
    • Wang, Z.1    Svejstrup, J.Q.2    Feaver, W.J.3    Wu, X.4    Kornberg, R.D.5    Friedberg, E.C.6
  • 8
    • 0028885363 scopus 로고
    • Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome
    • Svejstrup JQ, Wang Z, Feaver WJ, Wu X, Bushnell DA, Donahue TF, Friedberg EC, Kornberg RD: Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 1995, 80:21-28. Exhaustive biochemistry was used here to establish that TFIIH is required for both transcription and repair. This paper has strengthened the proposal that, in vivo, different TFIIH complexes exist which have specific roles.
    • (1995) Cell , vol.80 , pp. 21-28
    • Svejstrup, J.Q.1    Wang, Z.2    Feaver, W.J.3    Wu, X.4    Bushnell, D.A.5    Donahue, T.F.6    Friedberg, E.C.7    Kornberg, R.D.8
  • 9
    • 0028912931 scopus 로고
    • Yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH (TFIIH), are required for nucleotide excision repair and RNA polymerase II transcription
    • Wang Z, Buratowski S, Svejstrup JQ, Feaver WJ, Wu X, Kornberg RD, Donahue TF, Friedberg EC: Yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH (TFIIH), are required for nucleotide excision repair and RNA polymerase II transcription. Mol Cell Biol 1995, 15:2288-2293.
    • (1995) Mol Cell Biol , vol.15 , pp. 2288-2293
    • Wang, Z.1    Buratowski, S.2    Svejstrup, J.Q.3    Feaver, W.J.4    Wu, X.5    Kornberg, R.D.6    Donahue, T.F.7    Friedberg, E.C.8
  • 10
    • 0028232284 scopus 로고
    • RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription
    • Guzder SN, Sung P, Bailly V, Prakash L, Prakash S: RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature 1994, 369:578-581.
    • (1994) Nature , vol.369 , pp. 578-581
    • Guzder, S.N.1    Sung, P.2    Bailly, V.3    Prakash, L.4    Prakash, S.5
  • 11
    • 0028140494 scopus 로고
    • DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II
    • Guzder SN, Qui H, Sommers CH, Sung P, Prakash, Prakash S: DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature 1994, 367:91-94.
    • (1994) Nature , vol.367 , pp. 91-94
    • Guzder, S.N.1    Qui, H.2    Sommers, C.H.3    Sung, P.4    Prakash5    Prakash, S.6
  • 12
    • 0028085556 scopus 로고
    • XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair
    • O'Donovan A, Davies AA, Moggs JG, West SC, Wood RD: XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 1994, 371:432-435. This investigation, which uses synthetic DNA substrates, shows that XPG has a direct function in generating the 3′ incision to the DNA damage site. A cell extract, taken from an XPG-deficient patient, is shown to be defective in this activity.
    • (1994) Nature , vol.371 , pp. 432-435
    • O'Donovan, A.1    Davies, A.A.2    Moggs, J.G.3    West, S.C.4    Wood, R.D.5
  • 13
    • 0027943565 scopus 로고
    • Specific cleavage of model recombination and repair intermediates by the yeast Rad1/Rad10 endonuclease
    • •] which demonstrates that yeast Rad1-Rad10 proteins serve as the single endonucleolytic activity which generates a 5′ incision to the damage site.
    • (1994) Science , vol.265 , pp. 2082-2085
    • Bardwell, A.J.1    Bardwell, L.2    Tomkinson, A.E.3    Friedberg, E.C.4
  • 14
    • 0027521336 scopus 로고
    • Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease
    • Habraken Y, Sung P, Prakash L, Prakash S: Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 1993, 366:365-368.
    • (1993) Nature , vol.366 , pp. 365-368
    • Habraken, Y.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 15
    • 0027225340 scopus 로고
    • Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease
    • Tomkinson AE, Bardwell AJ, Bardwell L, Tappe NJ, Friedberg EC: Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature 1993, 362:860-862.
    • (1993) Nature , vol.362 , pp. 860-862
    • Tomkinson, A.E.1    Bardwell, A.J.2    Bardwell, L.3    Tappe, N.J.4    Friedberg, E.C.5
  • 16
    • 0028948394 scopus 로고
    • Mammalian DNA nucleotide excision repair reconstituted with purified components
    • Aboussekhra A, Biggerstaff M, Shivji MKK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hübscher U, Egly J-M, Wood RD: Mammalian DNA nucleotide excision repair reconstituted with purified components. Cell 1995, 80:859-868. The authors purify nearly all of the components required for NER from human cell extracts. The repair activity is then reconstituted by the addition of all the factors. A novel partially purified factor, called IF7, is required for NER; the authors discuss the possible identity of this factor.
    • (1995) Cell , vol.80 , pp. 859-868
    • Aboussekhra, A.1    Biggerstaff, M.2    Shivji, M.K.K.3    Vilpo, J.A.4    Moncollin, V.5    Podust, V.N.6    Protic, M.7    Hübscher, U.8    Egly, J.-M.9    Wood, R.D.10
  • 17
    • 0028896837 scopus 로고
    • Reconstitution of human DNA repair excision nuclease in a highly defined system
    • Mu D, Park C-H, Matsunaga T, Hsu DS, Reardon JT, Sancar A: Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem 1995, 270:2415-2418.
    • (1995) J Biol Chem , vol.270 , pp. 2415-2418
    • Mu, D.1    Park, C.-H.2    Matsunaga, T.3    Hsu, D.S.4    Reardon, J.T.5    Sancar, A.6
  • 18
    • 0029019788 scopus 로고
    • Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH
    • Guzder SN, Habraken Y, Sung P, Prakash L, Prakash S: Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 1995, 270:12973-12976.
    • (1995) J Biol Chem , vol.270 , pp. 12973-12976
    • Guzder, S.N.1    Habraken, Y.2    Sung, P.3    Prakash, L.4    Prakash, S.5
  • 19
    • 0029129283 scopus 로고
    • An interaction between the DNA repair factor XPA and replication protein a appears essential for nucleotide excision repair
    • Li L, Lu X, Peterson CA, Legerski RJ: An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol 1995, 15:5396-5402.
    • (1995) Mol Cell Biol , vol.15 , pp. 5396-5402
    • Li, L.1    Lu, X.2    Peterson, C.A.3    Legerski, R.J.4
  • 20
    • 0028929611 scopus 로고
    • RPA involvement in the damage-recognition and incision steps of nucleotide excision repair
    • He Z, Henricksen LA, Wold M, Ingles CJ: RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 1995, 374:566-569.
    • (1995) Nature , vol.374 , pp. 566-569
    • He, Z.1    Henricksen, L.A.2    Wold, M.3    Ingles, C.J.4
  • 22
    • 0028934368 scopus 로고
    • Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair
    • Li L, Peterson CA, Lu X, Legerski RJ: Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 1995, 15:1993-1998.
    • (1995) Mol Cell Biol , vol.15 , pp. 1993-1998
    • Li, L.1    Peterson, C.A.2    Lu, X.3    Legerski, R.J.4
  • 23
    • 0028932889 scopus 로고
    • The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor
    • Park C-H, Mu D, Reardon JT, Sancar A: The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem 1995, 270:4896-4902.
    • (1995) J Biol Chem , vol.270 , pp. 4896-4902
    • Park, C.-H.1    Mu, D.2    Reardon, J.T.3    Sancar, A.4
  • 24
    • 0028590113 scopus 로고
    • Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK
    • Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD: Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 1994, 79:1103-1109. By means of Western blot analysis and purification, p33 is identified here as the catalytic subunit of TFIIK and as a product of the KIN28 gene. Additional experiments demonstrate a direct interaction between Kin28 and the two largest subunits of RNA polymerase II, RPB1 and RPB2.
    • (1994) Cell , vol.79 , pp. 1103-1109
    • Feaver, W.J.1    Svejstrup, J.Q.2    Henry, N.L.3    Kornberg, R.D.4
  • 25
    • 0028600051 scopus 로고
    • The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor
    • Roy R, Adamczewski JP, Seroz T, Vermeulen W, Tassan J-P, Schaeffer L, Nigg EA, Hoeijmakers JHJ, Egly J-M: The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 1994, 79:1093-1101. The previously cloned human MO15 protein kinase is associated with TFIIH and is responsible for its carboxy-terminal domain kinase activity. Evidence suggests that MO15 is the catalytic subunit of the TFIIH-associated kinase. It is shown that TFIIH possesses CAK activity in vitro.
    • (1994) Cell , vol.79 , pp. 1093-1101
    • Roy, R.1    Adamczewski, J.P.2    Seroz, T.3    Vermeulen, W.4    Tassan, J.-P.5    Schaeffer, L.6    Nigg, E.A.7    Hoeijmakers, J.H.J.8    Egly, J.-M.9
  • 26
    • 0028954227 scopus 로고
    • Cdk-activating kinase complex is a component of human transcription factor TFIIH
    • Shiekhattar R, Mermeistein F, Fisher RP, Drapkin R, Dynlacht B, Wessling HC, Morgan DO, Reinberg D: Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 1995, 374:283-287. Purified TFIIH was found to contain MO15 (CDK7) and cyclin H. Furthermore, TFIIH was shown to phosphorylate both Cdc2 and Cdk2, suggestive of a link between cell cycle regulation and transcription.
    • (1995) Nature , vol.374 , pp. 283-287
    • Shiekhattar, R.1    Mermeistein, F.2    Fisher, R.P.3    Drapkin, R.4    Dynlacht, B.5    Wessling, H.C.6    Morgan, D.O.7    Reinberg, D.8
  • 27
    • 0028958673 scopus 로고
    • Association of Cdk-activation kinase subunits with transcription factor TFIIH
    • Serizawa H, Makela TP, Conaway JW, Conaway RC, Weinberg RA, Young RA: Association of Cdk-activation kinase subunits with transcription factor TFIIH. Nature 1995, 374:280-282. Here, the authors show that CDK7 and cyclin H are components of rat TFIIH.
    • (1995) Nature , vol.374 , pp. 280-282
    • Serizawa, H.1    Makela, T.P.2    Conaway, J.W.3    Conaway, R.C.4    Weinberg, R.A.5    Young, R.A.6
  • 28
    • 0028931265 scopus 로고
    • Principles of CDK regulation
    • Morgan DO: Principles of CDK regulation. Nature 1995, 374:131-134.
    • (1995) Nature , vol.374 , pp. 131-134
    • Morgan, D.O.1
  • 29
    • 0029066929 scopus 로고
    • KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity
    • Cismowski MJ, Laff GM, Solomon MJ, Reed SI: KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol Cell Biol 1995, 15:2983-2992.
    • (1995) Mol Cell Biol , vol.15 , pp. 2983-2992
    • Cismowski, M.J.1    Laff, G.M.2    Solomon, M.J.3    Reed, S.I.4
  • 30
    • 0029008667 scopus 로고
    • The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpblp CTD
    • Valay J-G, Simon M, Dubois M-F, Bensaude O, Facca C, Faye G: The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpblp CTD. J Mol Biol 1995, 249:535-544.
    • (1995) J Mol Biol , vol.249 , pp. 535-544
    • Valay, J.-G.1    Simon, M.2    Dubois, M.-F.3    Bensaude, O.4    Facca, C.5    Faye, G.6
  • 31
    • 0028352861 scopus 로고
    • Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II
    • Goodrich JA, Tjian R: Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 1994, 77:145-156.
    • (1994) Cell , vol.77 , pp. 145-156
    • Goodrich, J.A.1    Tjian, R.2
  • 32
    • 0029074137 scopus 로고
    • Recycling of the general transcription factors during RNA polymerase II transcription
    • Zawel L, Kumar P, Reinberg D: Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 1995, 9:1479-1490. By means of DNA templates attached to solid supports, a template competition assay, and Western blot analysis, the authors deduce that TFIIH is released after the transcription complex reaches the +30 nucleotide site, and, therefore, that TFIIH is not present during most of the transcription elongation process. This finding has dramatic implications for the various proposals that deal with the availability of TFIIH for repair. The authors also study other transcription factors, such as TFIIE in terms of its release during transcription.
    • (1995) Genes Dev , vol.9 , pp. 1479-1490
    • Zawel, L.1    Kumar, P.2    Reinberg, D.3
  • 33
    • 0029042392 scopus 로고
    • Common themes in assembly and function of eukaryotic transcription complexes
    • Zawel L, Reinberg D: Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem 1995, 64:533-561.
    • (1995) Annu Rev Biochem , vol.64 , pp. 533-561
    • Zawel, L.1    Reinberg, D.2
  • 34
    • 0023583191 scopus 로고
    • Preferential DNA repair in expressed genes
    • Hanawalt PC: Preferential DNA repair in expressed genes. Environ Health Perspect 1987, 76:9-14.
    • (1987) Environ Health Perspect , vol.76 , pp. 9-14
    • Hanawalt, P.C.1
  • 35
    • 0028969976 scopus 로고
    • Structure and function of transcription-repair coupling factor I. Structural domains and binding properties
    • Selby CP, Sancar A: Structure and function of transcription-repair coupling factor I. Structural domains and binding properties. J Biol Chem 1995, 270:4882-4889.
    • (1995) J Biol Chem , vol.270 , pp. 4882-4889
    • Selby, C.P.1    Sancar, A.2
  • 36
    • 0028949551 scopus 로고
    • Structure and function of transcription-repair coupling factor II. Catalytic properties
    • Selby CP, Sancar A: Structure and function of transcription-repair coupling factor II. Catalytic properties. J Biol Chem 1995, 270:4890-4895.
    • (1995) J Biol Chem , vol.270 , pp. 4890-4895
    • Selby, C.P.1    Sancar, A.2
  • 37
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription-repair coupling
    • Selby C, Sancar A: Molecular mechanism of transcription-repair coupling. Science 1993, 260:53-58.
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.1    Sancar, A.2
  • 38
    • 0026508774 scopus 로고
    • Cockayne syndrome: Review of 140 cases
    • Nance MA, Berry SA: Cockayne syndrome: review of 140 cases. Am J Med Genet 1992, 42:68-84.
    • (1992) Am J Med Genet , vol.42 , pp. 68-84
    • Nance, M.A.1    Berry, S.A.2
  • 39
    • 0026465663 scopus 로고
    • Xeroderma pigmentosum, Cockayne's syndrome, helicases, and DNA repair: What's the relationship?
    • Friedberg EC: Xeroderma pigmentosum, Cockayne's syndrome, helicases, and DNA repair: what's the relationship? Cell 1992, 71:887-889.
    • (1992) Cell , vol.71 , pp. 887-889
    • Friedberg, E.C.1
  • 40
    • 0027295923 scopus 로고
    • The conundrum of xeroderma pigmentosum-A rare disease with frequent complexities
    • Friedberg EC, Henning KA: The conundrum of xeroderma pigmentosum-a rare disease with frequent complexities. Mutat Res 1993, 289:47-53.
    • (1993) Mutat Res , vol.289 , pp. 47-53
    • Friedberg, E.C.1    Henning, K.A.2
  • 41
    • 0000723144 scopus 로고
    • Xeroderma pigmentosum
    • Edited by Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw-Hill
    • Cleaver JE, Kraemer KH: Xeroderma pigmentosum. In The metabolic basis of inherited disease, vol II, edn 6. Edited by Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw-Hill; 1989:2949-2971.
    • (1989) The Metabolic Basis of Inherited Disease, Edn 6 , vol.2 , pp. 2949-2971
    • Cleaver, J.E.1    Kraemer, K.H.2
  • 42
    • 0025323044 scopus 로고
    • Do we know the cause of xeroderma pigmentosum?
    • Cleaver JE: Do we know the cause of xeroderma pigmentosum? Carcinogenesis 1990, 11:875-882.
    • (1990) Carcinogenesis , vol.11 , pp. 875-882
    • Cleaver, J.E.1
  • 43
    • 0020711366 scopus 로고
    • Trichothiodystrophy, BIDS, IBIDS and PIBIDS?
    • Crovato F, Barrone C, Rebora A: Trichothiodystrophy, BIDS, IBIDS and PIBIDS? Br J Dermatol 1983, 108:247-253.
    • (1983) Br J Dermatol , vol.108 , pp. 247-253
    • Crovato, F.1    Barrone, C.2    Rebora, A.3
  • 44
    • 0023555206 scopus 로고
    • Cockayne's syndrome and trichothiodystrophy: Defective repair without cancer
    • Lehmann AR: Cockayne's syndrome and trichothiodystrophy: defective repair without cancer. Cancer Reviews 1987, 7:82-103.
    • (1987) Cancer Reviews , vol.7 , pp. 82-103
    • Lehmann, A.R.1
  • 45
    • 0024779847 scopus 로고
    • Trichothiodystrophy and the relationship between DNA repair and cancer
    • Lehmann AR: Trichothiodystrophy and the relationship between DNA repair and cancer. Bioessays 1989, 11:168-170.
    • (1989) Bioessays , vol.11 , pp. 168-170
    • Lehmann, A.R.1
  • 46
    • 0024348174 scopus 로고
    • DNA repair and cancer: Speculations based on studies with xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy
    • Lehmann AR, Norris PG: DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy. Carcinogenesis 1989, 10:1353-1356.
    • (1989) Carcinogenesis , vol.10 , pp. 1353-1356
    • Lehmann, A.R.1    Norris, P.G.2
  • 48
    • 0025341294 scopus 로고
    • The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA
    • Venema J, Mullenders LHF, Natarajan AT, Van Zeeland AA, Mayne LV: The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA 1990, 87:4707-4711.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 4707-4711
    • Venema, J.1    Mullenders, L.H.F.2    Natarajan, A.T.3    Van Zeeland, A.A.4    Mayne, L.V.5
  • 49
    • 0028596398 scopus 로고
    • Transcription-coupled repair and human disease
    • Hanawalt PC: Transcription-coupled repair and human disease. Science 1994, 266:1957-1958.
    • (1994) Science , vol.266 , pp. 1957-1958
    • Hanawalt, P.C.1
  • 50
    • 0028987268 scopus 로고
    • The SWI-SNF complex: A chromatin remodeling machine?
    • Peterson CL, Tamkun JW: The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci 1995, 20:143-146.
    • (1995) Trends Biochem Sci , vol.20 , pp. 143-146
    • Peterson, C.L.1    Tamkun, J.W.2
  • 51
    • 0026465665 scopus 로고
    • ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes
    • Troelstra C, Van Gool A, De Wit J, Vermeulen W, Bootsma D, Hoeijmakers JHJ: ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 1992, 71:939-953.
    • (1992) Cell , vol.71 , pp. 939-953
    • Troelstra, C.1    Van Gool, A.2    De Wit, J.3    Vermeulen, W.4    Bootsma, D.5    Hoeijmakers, J.H.J.6
  • 52
    • 0029088143 scopus 로고
    • The Cockayne syndrome group a gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH
    • Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, Schultz RA, Stefanini M, Lehmann AR, Mayne LV et al.: The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 1995, 82:555-564. The authors here report the cloning of the human CSA gene. The cDNA of this gene corrects the UV sensitivity and chloramphenicol acetyltransferase reactivation ability of CS-A cells. This predicted protein of 396 amino acids is a member of the WD-repeat protein family. In vitro translated CSA was demonstrated to interact with CSB and p44, a subunit of TFIIH, by immunoprecipitation experiments. The authors suggest that the finding that CSA interacts with p44 implicates a role for CSA in transcription and further discuss the possible molecular mechanisms in human diseases.
    • (1995) Cell , vol.82 , pp. 555-564
    • Henning, K.A.1    Li, L.2    Iyer, N.3    McDaniel, L.D.4    Reagan, M.S.5    Legerski, R.6    Schultz, R.A.7    Stefanini, M.8    Lehmann, A.R.9    Mayne, L.V.10
  • 53
    • 0028076764 scopus 로고
    • The ancient regulatory-protein family of WD-repeat proteins
    • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF: The ancient regulatory-protein family of WD-repeat proteins. Nature 1994, 371:297-300. Analysis of all the known members of the WD-repeat protein family provides information as to the possible function of these proteins. The authors propose a consensus motif and specific rules that may govern whether a protein is a member of this family.
    • (1994) Nature , vol.371 , pp. 297-300
    • Neer, E.J.1    Schmidt, C.J.2    Nambudripad, R.3    Smith, T.F.4
  • 54
    • 0028109412 scopus 로고
    • RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6
    • Van Gool AJ, Verhage R, Swagemakers SMA, Van de Putte P, Brouwer J, Troelstra C, Bootsma D, Hoeijmakers JHJ: RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J 1994, 13:5361-5369. Analysis of the yeast rad26 null mutant demonstrates lack of UV sensitivity but presence of a strand-specific repair defect. This phenotype remains a paradox when compared to the CS patient cells and the authors suggest that isolation of a yeast homologue to CSA may be informative.
    • (1994) EMBO J , vol.13 , pp. 5361-5369
    • Van Gool, A.J.1    Verhage, R.2    Swagemakers, S.M.A.3    Van De Putte, P.4    Brouwer, J.5    Troelstra, C.6    Bootsma, D.7    Hoeijmakers, J.H.J.8
  • 55
    • 0028810356 scopus 로고
    • Nucleotide excision repair and the link with transcription
    • Lehmann AR: Nucleotide excision repair and the link with transcription. Trends Biochem Sci 1995, 20:402-405.
    • (1995) Trends Biochem Sci , vol.20 , pp. 402-405
    • Lehmann, A.R.1
  • 56
    • 0025775473 scopus 로고
    • Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strands of active genes
    • Venema J, Van Hoffen A, Karcagi V, Natarajan AT, Van Zeeland A, Mullenders LHF: Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strands of active genes. Mol Cell Biol 1991, 11:4128-4134.
    • (1991) Mol Cell Biol , vol.11 , pp. 4128-4134
    • Venema, J.1    Van Hoffen, A.2    Karcagi, V.3    Natarajan, A.T.4    Van Zeeland, A.5    Mullenders, L.H.F.6
  • 57
    • 0028985014 scopus 로고
    • Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts
    • Van Hoffen A, Venema J, Meschini R, Van Zeeland AA, Mullenders LH: Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J 1995, 14:360-367.
    • (1995) EMBO J , vol.14 , pp. 360-367
    • Van Hoffen, A.1    Venema, J.2    Meschini, R.3    Van Zeeland, A.A.4    Mullenders, L.H.5
  • 58
    • 0027999206 scopus 로고
    • The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae
    • Verhage R, Zeeman A-M, Gleig F, Bang DD, Van de Putte P, Brouwer J: The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol Cell Biol 1994, 14:6135-6142.
    • (1994) Mol Cell Biol , vol.14 , pp. 6135-6142
    • Verhage, R.1    Zeeman, A.-M.2    Gleig, F.3    Bang, D.D.4    Van De Putte, P.5    Brouwer, J.6
  • 60
    • 0028269240 scopus 로고
    • Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23
    • Masutani C, Sugasawa K, Yanigasawa J, Soniyama T, Ui M, Enomoto T, Takio K, Tanaka K, Van der Spek PJ, Bootsma D et al.: Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 1994, 13:1831-1843.
    • (1994) EMBO J , vol.13 , pp. 1831-1843
    • Masutani, C.1    Sugasawa, K.2    Yanigasawa, J.3    Soniyama, T.4    Ui, M.5    Enomoto, T.6    Takio, K.7    Tanaka, K.8    Van Der Spek, P.J.9    Bootsma, D.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.