-
6
-
-
0041968036
-
-
Czerminski, R., Kwiatkowski, J. S., Person, W. B., and Szczepaniak, K., 1989. J. Mol. Struct., 198:297
-
(1989)
J. Mol. Struct.
, vol.198
, pp. 297
-
-
Czerminski, R.1
Kwiatkowski, J.S.2
Person, W.B.3
Szczepaniak, K.4
-
7
-
-
0025355312
-
-
Anwander, E. H.S., Probst, M. M., and Rode, B. M., 1990. Biopolymers, 29:757
-
(1990)
Biopolymers
, vol.29
, pp. 757
-
-
Anwander, E.H.S.1
Probst, M.M.2
Rode, B.M.3
-
8
-
-
33751392311
-
-
Colson, A. O., Besler, B., Close, D. M., and Sevilla, M. D., 1991. J. Phys. Chem., 96:661
-
(1991)
J. Phys. Chem.
, vol.96
, pp. 661
-
-
Colson, A.O.1
Besler, B.2
Close, D.M.3
Sevilla, M.D.4
-
9
-
-
0042468598
-
-
(1991)
-
Colson, A. O., Besler, B., and Sevilla, M. D., J. Phys. Chem., 969767 (1991)
-
J. Phys. Chem.
, vol.96
, pp. 9767
-
-
Colson, A.O.1
Besler, B.2
Sevilla, M.D.3
-
10
-
-
5244342049
-
-
(1991)
-
Colson, A. O., Besler, B., and Sevilla, M. D., J. Phys. Chem., 9713852 (1991)
-
J. Phys. Chem.
, vol.97
, pp. 13852
-
-
Colson, A.O.1
Besler, B.2
Sevilla, M.D.3
-
14
-
-
0029167904
-
-
Hobza, P., Sponer, J., and Polásek, M., 1995. J. Am. Chem. Soc., 117:792
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 792
-
-
Hobza, P.1
Sponer, J.2
Polásek, M.3
-
16
-
-
0028029749
-
-
Jiang, S.-P., Raghunathan, G., Ting, K.-L., Xuan, J. C., and Jernigan, R. L., 1994. J. Biomol. Struct. Dyn., 12:367
-
(1994)
J. Biomol. Struct. Dyn.
, vol.12
, pp. 367
-
-
Jiang, S.-P.1
Raghunathan, G.2
Ting, K.-L.3
Xuan, J.C.4
Jernigan, R.L.5
-
17
-
-
0011824888
-
-
Sponer, J., Leszczynski, J., and Hobza, P., 1996. J. Phys. Chem., 100:1965
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 1965
-
-
Sponer, J.1
Leszczynski, J.2
Hobza, P.3
-
18
-
-
0001225025
-
-
Sponer, J., Leszczynski, J., and Hobza, P., 1996. J. Comput. Chem., 17:841
-
(1996)
J. Comput. Chem.
, vol.17
, pp. 841
-
-
Sponer, J.1
Leszczynski, J.2
Hobza, P.3
-
19
-
-
0001828655
-
-
Leszczynski J., (ed), Singapore: World Scientific Publisher
-
Sponer, J., Hobza, P., and Leszczynski, J., 1996. Computational Chemistry. Reviews of Current Trends Edited by:Leszczynski, J., 185Singapore:World Scientific Publisher.
-
(1996)
Computational Chemistry. Reviews of Current Trends
, pp. 185
-
-
Sponer, J.1
Hobza, P.2
Leszczynski, J.3
-
22
-
-
0029869883
-
-
Sponer, J., Florián, J., Leszczynski, J., and Hobza, P., 1996. J. Biomol. Struct. Dyn., 13:827
-
(1996)
J. Biomol. Struct. Dyn.
, vol.13
, pp. 827
-
-
Sponer, J.1
Florián, J.2
Leszczynski, J.3
Hobza, P.4
-
23
-
-
0029998770
-
-
Sponer, J., Leszczynski, J., Vetterl, V., and Hobza, P., 1996. J. Biomol. Struct. Dyn., 13:695
-
(1996)
J. Biomol. Struct. Dyn.
, vol.13
, pp. 695
-
-
Sponer, J.1
Leszczynski, J.2
Vetterl, V.3
Hobza, P.4
-
24
-
-
33748621478
-
-
Sponer, J., Leszczynski, J., and Hobza, P., 1996. J. Phys. Chem., 100:5590
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 5590
-
-
Sponer, J.1
Leszczynski, J.2
Hobza, P.3
-
28
-
-
85023923235
-
Submitted to
-
Bludsky, O., Sponer, J., Leszczynski, J., Hobza, P., and Spirko, V., submitted to. J. Chem. Phys
-
J. Chem. Phys.
-
-
Bludsky, O.1
Sponer, J.2
Leszczynski, J.3
Hobza, P.4
Spirko, V.5
-
30
-
-
85023900473
-
-
order to speed up the numerical evaluation of integrals, the atomic orbitals are approximated by fixed combinations of Gauss-type functions
-
In order to speed up the numerical evaluation of integrals, the atomic orbitals are approximated by fixed combinations of Gauss-type functions
-
-
-
-
31
-
-
84873055189
-
-
New York: John Wiley & Sons. Inc
-
Hehre, W. J., Radom, L., Schleyer, P. v.R., and Pople, J. A., 1986. Ab initio Molecular Orbital Theory New York:John Wiley & Sons. Inc.
-
(1986)
Ab initio Molecular Orbital Theory
-
-
Hehre, W.J.1
Radom, L.2
Schleyer, P.V.3
Pople, J.A.4
-
36
-
-
0000213148
-
-
Hobza, P., Selzle, H. L., and Schlag, E. W., 1994. Chem. Rev., 94:1767
-
(1994)
Chem. Rev.
, vol.94
, pp. 1767
-
-
Hobza, P.1
Selzle, H.L.2
Schlag, E.W.3
-
37
-
-
0011682081
-
-
Pople, J. A., Head-Gordon, M., and Raghavachari, K., 1987. J. Chem. Phys., 89:5968
-
(1987)
J. Chem. Phys.
, vol.89
, pp. 5968
-
-
Pople, J.A.1
Head-Gordon, M.2
Raghavachari, K.3
-
38
-
-
0001072384
-
-
Watts, J. D., Urban, M., and Bartlett, R. J., 1995. Theor. Chim. Acta, 90:341
-
(1995)
Theor. Chim. Acta
, vol.90
, pp. 341
-
-
Watts, J.D.1
Urban, M.2
Bartlett, R.J.3
-
39
-
-
0042117475
-
-
Estrin, D. A., Paglieri, L., and Corongiu, G., 1994. J. Phys. Chem., 98:5653
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 5653
-
-
Estrin, D.A.1
Paglieri, L.2
Corongiu, G.3
-
44
-
-
33748499149
-
-
Nowak, M. J., Lapinski, L., Kwiatkowski, J. S., and Leszczynski, J., 1996. J. Phys. Chem., 100:3527
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 3527
-
-
Nowak, M.J.1
Lapinski, L.2
Kwiatkowski, J.S.3
Leszczynski, J.4
-
45
-
-
9544233693
-
-
Lapinski, L., Rostkowska, H., Nowak, M. J., Kwiatkowski, J. S., and Leszczynski, J., Spectrochimica Acta, in press
-
Spectrochimica Acta
-
-
Lapinski, L.1
Rostkowska, H.2
Nowak, M.J.3
Kwiatkowski, J.S.4
Leszczynski, J.5
-
49
-
-
0001045066
-
-
Gould, I. R., Burton, N. A., Hall, R. J., and Hillier, I. H., 1995. J. Mol. Struct. (THEOCHEM), 331:147
-
(1995)
J. Mol. Struct. (THEOCHEM)
, vol.331
, pp. 147
-
-
Gould, I.R.1
Burton, N.A.2
Hall, R.J.3
Hillier, I.H.4
-
51
-
-
84986461296
-
-
Hobza, P., Šponer, J., and Reschel, T., 1995. J. Comput. Chem., 11:1315
-
(1995)
J. Comput. Chem.
, vol.11
, pp. 1315
-
-
Hobza, P.1
Šponer, J.2
Reschel, T.3
-
52
-
-
0001042824
-
-
Sim, F., St-Amant, A., Papoi, I., and Salahub, D. R., 1992. J. Am. Chem. Soc., 114:4391
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 4391
-
-
Sim, F.1
St-Amant, A.2
Papoi, I.3
Salahub, D.R.4
-
53
-
-
0000277156
-
-
Laasonen, K., Pannello, M., Car, R., Lee, C., and Vanderbilt, D., 1993. Chem. Phys. Lett., 207:208
-
(1993)
Chem. Phys. Lett.
, vol.207
, pp. 208
-
-
Laasonen, K.1
Pannello, M.2
Car, R.3
Lee, C.4
Vanderbilt, D.5
-
55
-
-
85023926975
-
-
The factors mentioned are theoretical factors, which may be somewhat reduced by an effective programming and computer implementation. This is especially well done for the HF approximation, where the actual “computer requirements” factor can be below 3
-
The factors mentioned are theoretical factors, which may be somewhat reduced by an effective programming and computer implementation. This is especially well done for the HF approximation, where the actual “computer requirements” factor can be below 3
-
-
-
-
57
-
-
0001246313
-
-
van Duijneveldt, F. B., van Duijneveldt - van de Rijdt, J. G.C.M., and van Lenthe, J., 1994. Chem. Rev., 94:1873
-
(1994)
Chem. Rev.
, vol.94
, pp. 1873
-
-
van Duijneveldt, F.B.1
van Duijneveldt, J.G.C.M.2
van Lenthe, J.3
-
59
-
-
0842341771
-
-
Dewar, M. J.S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J.P., 1985. J. Am. Chem. Soc., 107:3902
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 3902
-
-
Dewar, M.J.S.1
Zoebisch, E.G.2
Healy, E.F.3
Stewart, J.J.P.4
-
64
-
-
0029011701
-
-
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Jr., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., 1995. J. Am. Chem. Soc., 117:5179
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 5179
-
-
Cornell, W.D.1
Cieplak, P.2
Bayly, C.I.3
Gould, I.R.4
Merz, K.M.5
Ferguson, D.M.6
Spellmeyer, D.C.7
Fox, T.8
Caldwell, J.W.9
Kollman, P.A.10
-
65
-
-
6344260593
-
-
Mac Kerell, A. D., Jr., Wiorkiewicz-Kuczera, J., and Karplus, M., 1995. J. Am. Chem. Soc., 117:11946
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 11946
-
-
Mac Kerell, A.D.1
Wiorkiewicz-Kuczera, J.2
Karplus, M.3
-
68
-
-
84988091025
-
-
Allinger, N. L., Kok, R. A., and Imam, M. R., 1988. J. Comput. Chem., 9:591
-
(1988)
J. Comput. Chem.
, vol.9
, pp. 591
-
-
Allinger, N.L.1
Kok, R.A.2
Imam, M.R.3
-
69
-
-
0028546324
-
-
CVFF - Discover, Version 2.9.5&94.0, May 1994, Biosym Technoloogies, San Diego, Ca.; CFF95 - A.T. Hagler and C.S, Ewig,; CFF95 force field has not yet been released
-
1994. Comput. Phys. Commun., 84:131 CVFF - Discover, Version 2.9.5&94.0, May 1994, Biosym Technoloogies, San Diego, Ca.; CFF95 - A.T. Hagler and C.S, Ewig,; CFF95 force field has not yet been released
-
(1994)
Comput. Phys. Commun.
, vol.84
, pp. 131
-
-
-
72
-
-
85023955581
-
-
299
-
Langlet, J., Claverie, P., Caron, F., and Boevue, J. C., 1981. Int. J. Quantum Chem., 1:9 299
-
(1981)
Int. J. Quantum Chem.
, vol.1
, pp. 9
-
-
Langlet, J.1
Claverie, P.2
Caron, F.3
Boevue, J.C.4
-
81
-
-
85023920222
-
-
Hobza, P., Hubálek, F., Kabeláč, M., Mejzlík, P., Sponer, J., and Vondrášek, J., Chem. Phys. Let. in press.
-
Chem. Phys. Let. in press.
-
-
Hobza, P.1
Hubálek, F.2
Kabeláč, M.3
Mejzlík, P.4
Sponer, J.5
Vondrášek, J.6
-
82
-
-
85023950068
-
-
Hobza, P., Hubálek, F., Kabeláč, M., Mejzlík, P., Šponer, J., and Vondrá Šek, J., to be published.
-
To be published.
-
-
Hobza, P.1
Hubálek, F.2
Kabeláč, M.3
Mejzlík, P.4
Šponer, J.5
Vondrá Šek, J.6
-
88
-
-
0347649781
-
-
Ha, T. K., Keller, H. J., Gunde, R., and Gunthard, H. H., 1996. J. Mol. Struct., 376:375
-
(1996)
J. Mol. Struct.
, vol.376
, pp. 375
-
-
Ha, T.K.1
Keller, H.J.2
Gunde, R.3
Gunthard, H.H.4
-
89
-
-
36449004618
-
-
This estimate is based on a comparison of HF/6–31G**-optimized and MP2/6–31G**-optimized geometries of cytosine dimer; the length of hydrogen bonds of the MP2-optimized structure has been corrected for the basis set superposition error (17). Let us note that a comparison with crystal data is not straightforward, because the H-bond lengths may be significantly influenced by the crystal field effects - for more details see S. Suhai
-
1995. J. Chem. Phys., 103:7030 This estimate is based on a comparison of HF/6–31G**-optimized and MP2/6–31G**-optimized geometries of cytosine dimer; the length of hydrogen bonds of the MP2-optimized structure has been corrected for the basis set superposition error (17). Let us note that a comparison with crystal data is not straightforward, because the H-bond lengths may be significantly influenced by the crystal field effects - for more details see S. Suhai
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 7030
-
-
-
90
-
-
85023932383
-
-
12,. terms) while the second term includes the change of coulombic energy when passing from HF to MP2 level. Dipole and quadrupole moments are mostly overestimated at HF level by about 10–20%
-
12,. terms) while the second term includes the change of coulombic energy when passing from HF to MP2 level. Dipole and quadrupole moments are mostly overestimated at HF level by about 10–20%
-
-
-
-
91
-
-
85023907851
-
-
−1 - 36). The agreement between theory and experiment for the medium-sized basis set is due a compensation of errors: size of basis set on one hand and neglect of higher correlation energy contributions on the other hand. It should be mentioned that the experimental value referred above has been reevaluated. This indicates that outcomes of experimental studies should be taken with care, including the DNA base pairs experiments. For a long time, the only data available were gas phase interaction enthalpies from mass field spectroscopy by Yanson et al. (93). Their reliability could be questioned because determination of enthalpy from the slope of the van't Hoff curve may be ambiguous. However, they are in a good agreement with theoretical results, including MP2 studies (17). Recently, Dey et al. (94) reported gas phase pseudoasociation constants for DNA base pairs. We tried to reproduce their results using the calculated interaction enthalpies and the entropy contribution obtained within the rigid rotor and harmonic oscillator - ideal gas approximations (P. Hobza and J. Šponer, submitted to). The difference between experimental and theoretical values was very large. Taking into account the quality of the theoretical MP2 procedure used the experimental values mentioned are suspicious. In addition it means that the two available gas phase experimental studies on DNA base pairs are mutually inconsistent. We assume that some assumptions given in ref. 94 (reproducibility of the desorption process and/or the thermodynamic equilibrium in the beam expansion) were not fulfilled
-
−1 - 36). The agreement between theory and experiment for the medium-sized basis set is due a compensation of errors:size of basis set on one hand and neglect of higher correlation energy contributions on the other hand. It should be mentioned that the experimental value referred above has been reevaluated. This indicates that outcomes of experimental studies should be taken with care, including the DNA base pairs experiments. For a long time, the only data available were gas phase interaction enthalpies from mass field spectroscopy by Yanson et al. (93). Their reliability could be questioned because determination of enthalpy from the slope of the van't Hoff curve may be ambiguous. However, they are in a good agreement with theoretical results, including MP2 studies (17). Recently, Dey et al. (94) reported gas phase pseudoasociation constants for DNA base pairs. We tried to reproduce their results using the calculated interaction enthalpies and the entropy contribution obtained within the rigid rotor and harmonic oscillator - ideal gas approximations (P. Hobza and J. Šponer, submitted to). The difference between experimental and theoretical values was very large. Taking into account the quality of the theoretical MP2 procedure used the experimental values mentioned are suspicious. In addition it means that the two available gas phase experimental studies on DNA base pairs are mutually inconsistent. We assume that some assumptions given in ref. 94 (reproducibility of the desorption process and/or the thermodynamic equilibrium in the beam expansion) were not fulfilled
-
Chem. Phys. Lett.
-
-
-
93
-
-
0018471205
-
-
Yanson, I. K., Teplitsky, A. B., and Sukhodub, L. F., 1979. Biopolymers, 18:1149
-
(1979)
Biopolymers
, vol.18
, pp. 1149
-
-
Yanson, I.K.1
Teplitsky, A.B.2
Sukhodub, L.F.3
-
94
-
-
0028133674
-
-
Dey, M., Moritz, F., Grotemeyer, J., and Schlag, E. W., 1994. J. Am. Chem. Soc., 116:9211
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9211
-
-
Dey, M.1
Moritz, F.2
Grotemeyer, J.3
Schlag, E.W.4
-
102
-
-
0000628471
-
-
Hobza, P., Selzle, H. L., and Schlag, E. W., 1994. J. Am. Chem. Soc., 116:3500
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 3500
-
-
Hobza, P.1
Selzle, H.L.2
Schlag, E.W.3
-
104
-
-
36449008607
-
-
Klopper, W., Schutz, M., Luthi, H. P., and Leutwyler, S., 1995. J. Chem. Phys, 103:1085
-
(1995)
J. Chem. Phys
, vol.103
, pp. 1085
-
-
Klopper, W.1
Schutz, M.2
Luthi, H.P.3
Leutwyler, S.4
-
109
-
-
9544251493
-
-
Florian, J., Baumruk, V., and Leszczynski, J., 1991. J. Phys. Chem., 113:2810
-
(1991)
J. Phys. Chem.
, vol.113
, pp. 2810
-
-
Florian, J.1
Baumruk, V.2
Leszczynski, J.3
-
110
-
-
0025728614
-
-
Pranata, J., Wierschke, S. C., and Jorgensen, W. L., 1991. J. Am. Chem. Soc., 113:2810
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 2810
-
-
Pranata, J.1
Wierschke, S.C.2
Jorgensen, W.L.3
-
111
-
-
0021757436
-
-
Weiner, S., Kollman, P. A., Case, D., Singh, U., Ghio, C., Alagona, G., Profeta, S., and Weiner, P., 1984. J. Am. Chem. Soc., 106:765
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 765
-
-
Weiner, S.1
Kollman, P.A.2
Case, D.3
Singh, U.4
Ghio, C.5
Alagona, G.6
Profeta, S.7
Weiner, P.8
-
112
-
-
0019056470
-
-
Zhurkin, V. B., Poltev, V. I., and Florentev, V. L., 1980. Mol. Biol. (USSR), 14:1116
-
(1980)
Mol. Biol. (USSR)
, vol.14
, pp. 1116
-
-
Zhurkin, V.B.1
Poltev, V.I.2
Florentev, V.L.3
-
114
-
-
85023955988
-
-
Due to the importance of dispersion energy, we do not know whether the stacking energies are overestimated or underestimated. The use of large basis set would increase the stabilization energy, however, higher-order correlation contributions could significantly shift the intermolecular correlation interaction energy in the opposite direction. The balance between these two trends is not known, because it is different for different systems
-
Due to the importance of dispersion energy, we do not know whether the stacking energies are overestimated or underestimated. The use of large basis set would increase the stabilization energy, however, higher-order correlation contributions could significantly shift the intermolecular correlation interaction energy in the opposite direction. The balance between these two trends is not known, because it is different for different systems
-
-
-
-
115
-
-
0014980698
-
-
Bugg, C. E., Thomas, J. M., Sundaralingam, M., and Rao, S. T., 1971. Biopolymers, 10:175
-
(1971)
Biopolymers
, vol.10
, pp. 175
-
-
Bugg, C.E.1
Thomas, J.M.2
Sundaralingam, M.3
Rao, S.T.4
-
116
-
-
9544247842
-
-
Šponer, J., Jursa, J., and Kypr, J., 1994. Nucleosid. Nucleotid., 13:671
-
(1994)
Nucleosid. Nucleotid.
, vol.13
, pp. 671
-
-
Šponer, J.1
Jursa, J.2
Kypr, J.3
-
118
-
-
85023950643
-
-
manuscript in preparation
-
Šponer, J., Gabb, H., Leszczynski, J., and Hobza, P., manuscript in preparation
-
-
-
Šponer, J.1
Gabb, H.2
Leszczynski, J.3
Hobza, P.4
-
120
-
-
85023902729
-
-
These data were obtained at the HF/4–31G level with dispersion energy evaluated by the second-order sum-of-state perturbation method (W. A. Lathan, G. R. Pack and K. Morokuma, (1975)), and represented benchmark values for nearly a decade. Our MP2/6–31G* calculations qualitatively improve these data by addresing two following items. I) The method applied by Aida can evaluate the dispersion attraction, but it does not take into consideration the intrasystem correlation interaction energy. The intrasystem correlation interaction energy reduces the electrostatic (dipole - dipole) interaction compared with the HF level II) To evaluate the interaction energy properly, the basis set of atomic Orbitals must be flexible enough to cover the space between the interacting monomers; i.e., it must contain diffuse and polarization functions. 4–31G basis set does not fulfil any of these conditions, while our basis set contains one set of d-polarization functions especially modified to evaluate the dispersion contributions (diffuse polarization functions with an exponent of 0.25)
-
J. Am. Chem. Soc., 976624 These data were obtained at the HF/4–31G level with dispersion energy evaluated by the second-order sum-of-state perturbation method (W. A. Lathan, G. R. Pack and K. Morokuma, (1975)), and represented benchmark values for nearly a decade. Our MP2/6–31G* calculations qualitatively improve these data by addresing two following items. I) The method applied by Aida can evaluate the dispersion attraction, but it does not take into consideration the intrasystem correlation interaction energy. The intrasystem correlation interaction energy reduces the electrostatic (dipole - dipole) interaction compared with the HF level II) To evaluate the interaction energy properly, the basis set of atomic Orbitals must be flexible enough to cover the space between the interacting monomers; i.e., it must contain diffuse and polarization functions. 4–31G basis set does not fulfil any of these conditions, while our basis set contains one set of d-polarization functions especially modified to evaluate the dispersion contributions (diffuse polarization functions with an exponent of 0.25)
-
J. Am. Chem. Soc.
, vol.97
, pp. 6624
-
-
-
121
-
-
0027278767
-
-
Gehring, K., Leroy, J.-L., and Gueron, M., 1993. Nature, 363:561
-
(1993)
Nature
, vol.363
, pp. 561
-
-
Gehring, K.1
Leroy, J.-L.2
Gueron, M.3
-
122
-
-
0028124986
-
-
Chen, L., Cai, L., Zhang, X., and Rich, A., 1994. Biochemistry, 33:13540
-
(1994)
Biochemistry
, vol.33
, pp. 13540
-
-
Chen, L.1
Cai, L.2
Zhang, X.3
Rich, A.4
|