메뉴 건너뛰기




Volumn 49, Issue 4-5, 1999, Pages 363-379

Empirical modeling of antibiotic fermentation process using neural networks and genetic algorithms

Author keywords

Empirical modeling; Feature extraction; Feature selection; Fermentation process; Genetic algorithms; Hybrid modeling; Neural networks

Indexed keywords


EID: 0013004399     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0378-4754(99)00045-2     Document Type: Article
Times cited : (24)

References (29)
  • 1
    • 0027909087 scopus 로고
    • Mathematical modeling of growth and alkaloid production in Claviceps purpurea batch fermentation
    • S. Miličić, J. Velušček, M. Kremser, H. Sočič, Mathematical modeling of growth and alkaloid production in Claviceps purpurea batch fermentation, Biotechnol. Bioeng. 41(5) (1993) 503-511.
    • (1993) Biotechnol. Bioeng. , vol.41 , Issue.5 , pp. 503-511
    • Miličić, S.1    Velušček, J.2    Kremser, M.3    Sočič, H.4
  • 2
    • 0029636418 scopus 로고
    • A model that links growth and secondary metabolite production in plant cell suspension cultures
    • J. Guardiola, J.L. Iborra, M. Cánovas, A model that links growth and secondary metabolite production in plant cell suspension cultures, Biotechnol. Bioeng. 46(3) (1995) 291-297.
    • (1995) Biotechnol. Bioeng. , vol.46 , Issue.3 , pp. 291-297
    • Guardiola, J.1    Iborra, J.L.2    Cánovas, M.3
  • 3
    • 0027910082 scopus 로고
    • A simple model for the optimization of the extracted yield of antibiotics isolated from fermented broths by direct crystallization
    • J.P. Cardoso, A simple model for the optimization of the extracted yield of antibiotics isolated from fermented broths by direct crystallization, Biotechnol. Bioeng. 42(9) (1993) 1068-1076.
    • (1993) Biotechnol. Bioeng. , vol.42 , Issue.9 , pp. 1068-1076
    • Cardoso, J.P.1
  • 4
    • 0030570932 scopus 로고    scopus 로고
    • A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum
    • G.C. Paul, C.R. Thomas, A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum, Biotechnol. Bioeng. 51(5) (1996) 558-572.
    • (1996) Biotechnol. Bioeng. , vol.51 , Issue.5 , pp. 558-572
    • Paul, G.C.1    Thomas, C.R.2
  • 5
    • 0343923410 scopus 로고    scopus 로고
    • Simulation of penicillin production in fed-batch cultivations using a morphologically structured model
    • T.C. Zangirolami, C.L. Johansen, J. Nielsen, S.B. Jørgensen, Simulation of penicillin production in fed-batch cultivations using a morphologically structured model, Biotechnol. Bioeng. 56(6) (1997) 593-604.
    • (1997) Biotechnol. Bioeng. , vol.56 , Issue.6 , pp. 593-604
    • Zangirolami, T.C.1    Johansen, C.L.2    Nielsen, J.3    Jørgensen, S.B.4
  • 7
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks 1(1) (1990) 4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 9
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic system modelling and identification
    • S. Chen, S.A. Billings, Neural networks for nonlinear dynamic system modelling and identification, Int. J. Control 56(2) (1992) 319-346.
    • (1992) Int. J. Control , vol.56 , Issue.2 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 10
    • 0025701454 scopus 로고
    • On-line prediction of fermentation variables using neural networks
    • J. Thibault, V.V. Breusegem, A. Chéruy, On-line prediction of fermentation variables using neural networks, Biotechnol. Bioeng. 36 (1990) 1041-1048.
    • (1990) Biotechnol. Bioeng. , vol.36 , pp. 1041-1048
    • Thibault, J.1    Breusegem, V.V.2    Chéruy, A.3
  • 13
    • 0027335269 scopus 로고
    • Structure and parameter identification of a batch fermentation process using non-linear modelling
    • San Francisco, CA, June
    • M. Keulers, Structure and parameter identification of a batch fermentation process using non-linear modelling, in: Proceedings of the American Control Conference, San Francisco, CA, June 1993, pp. 2261-2265.
    • (1993) Proceedings of the American Control Conference , pp. 2261-2265
    • Keulers, M.1
  • 14
    • 0027625477 scopus 로고
    • Neural network modeling of batch cell growth pattern
    • M.-J. Syu, G.T. Tsao, Neural network modeling of batch cell growth pattern, Biotechnol. Bioeng. 42(3) (1993) 376-380.
    • (1993) Biotechnol. Bioeng. , vol.42 , Issue.3 , pp. 376-380
    • Syu, M.-J.1    Tsao, G.T.2
  • 15
    • 0028765396 scopus 로고
    • Artificial neural network based experimental design procedures for enhancing fermentation development
    • J. Glassey, G.A. Montague, A.C. Ward, B.V. Kara, Artificial neural network based experimental design procedures for enhancing fermentation development, Biotechnol. Bioeng. 44(4) (1994) 397-405.
    • (1994) Biotechnol. Bioeng. , vol.44 , Issue.4 , pp. 397-405
    • Glassey, J.1    Montague, G.A.2    Ward, A.C.3    Kara, B.V.4
  • 16
    • 38249003486 scopus 로고
    • Modelling of a fermentation process using multi-layer perceptrons: Epochs vs pattern learning, sigmoid vs linear transfer function
    • D. Tsaptsinos, J.R. Leigh, Modelling of a fermentation process using multi-layer perceptrons: Epochs vs pattern learning, sigmoid vs linear transfer function, J. Microcomput. Appl. 16 (1993) 125-136.
    • (1993) J. Microcomput. Appl. , vol.16 , pp. 125-136
    • Tsaptsinos, D.1    Leigh, J.R.2
  • 17
    • 0029155571 scopus 로고
    • Neuroidentification of a biotechnological process: Issues and applications
    • D. Tsaptsinos, R. Tang, J.R. Leigh, Neuroidentification of a biotechnological process: Issues and applications, Neurocomputing 9 (1995) 63-79.
    • (1995) Neurocomputing , vol.9 , pp. 63-79
    • Tsaptsinos, D.1    Tang, R.2    Leigh, J.R.3
  • 18
    • 0030778044 scopus 로고    scopus 로고
    • Combining neural and conventional paradigms for modelling, prediction and control
    • M. Agarwal, Combining neural and conventional paradigms for modelling, prediction and control, Int. J. Systems Sci. 28(1) (1997) 65-81.
    • (1997) Int. J. Systems Sci. , vol.28 , Issue.1 , pp. 65-81
    • Agarwal, M.1
  • 19
    • 0343052706 scopus 로고    scopus 로고
    • An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances
    • H.J.L. van Can, H.A.B. te Braake, C. Hellinga, K.C.A.M. Luyben, An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances, Biotechnol. Bioeng. 54(6) (1997) 549-566.
    • (1997) Biotechnol. Bioeng. , vol.54 , Issue.6 , pp. 549-566
    • Van Can, H.J.L.1    Te Braake, H.A.B.2    Hellinga, C.3    Luyben, K.C.A.M.4
  • 20
    • 0028484335 scopus 로고
    • Modeling chemical processes using prior knowledge and neural networks
    • M.L. Thompson, M.A. Kramer, Modeling chemical processes using prior knowledge and neural networks, AIChE J. 40(8) (1994) 1328-1340.
    • (1994) AIChE J. , vol.40 , Issue.8 , pp. 1328-1340
    • Thompson, M.L.1    Kramer, M.A.2
  • 21
    • 0030081992 scopus 로고    scopus 로고
    • A neural-network based model of bioreaction kinetics
    • B. Saxén, H. Saxén, A neural-network based model of bioreaction kinetics, Canadian J. Chem. Engrg. 74 (1996) 124-131.
    • (1996) Canadian J. Chem. Engrg. , vol.74 , pp. 124-131
    • Saxén, B.1    Saxén, H.2
  • 22
    • 0030174697 scopus 로고    scopus 로고
    • A hybrid neural network - First principles approach for modelling of cell metabolism
    • P.C. Pu, J.P. Barford, A hybrid neural network - first principles approach for modelling of cell metabolism, Comput. Chem. Engrg. 20(6/7) (1996) 951-958.
    • (1996) Comput. Chem. Engrg. , vol.20 , Issue.6-7 , pp. 951-958
    • Pu, P.C.1    Barford, J.P.2
  • 23
    • 0030083646 scopus 로고    scopus 로고
    • Predictive control of quality in batch polymerization using hybrid ANN models
    • A.Y. Tsen, S.S. Jang, D.S.H. Wong, B. Joseph, Predictive control of quality in batch polymerization using hybrid ANN models, AIChE J. 42(2) (1996) 455-465.
    • (1996) AIChE J. , vol.42 , Issue.2 , pp. 455-465
    • Tsen, A.Y.1    Jang, S.S.2    Wong, D.S.H.3    Joseph, B.4
  • 24
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody, C.J. Darken, Fast learning in networks of locally-tuned processing units, Neural Comput. 1 (1989) 281-294.
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 25
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • F. Girosi, T. Poggio, Networks and the best approximation property, Biol. Cybernet. 63 (1990) 169-176.
    • (1990) Biol. Cybernet. , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 26
    • 0001683814 scopus 로고
    • Layered neural networks with gaussian hidden units as universal approximations
    • E.J. Hartman, J.D. Keeler, Layered neural networks with gaussian hidden units as universal approximations, Neural Comput. 2 (1990) 210-215.
    • (1990) Neural Comput. , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.