-
3
-
-
33646657680
-
-
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043 (1985).
-
(1985)
Phys. Rev. B
, vol.32
, pp. 1043
-
-
Miller, D.A.B.1
Chemla, D.S.2
Damen, T.C.3
Gossard, A.C.4
Wiegmann, W.5
Wood, T.H.6
Burrus, C.A.7
-
4
-
-
0000360644
-
-
R. Y.-F. Yip, A. Aït-Ouali, A. Bensaada, P. Desjardins, M. Beaudoin, L. Isnard, J. L. Brebner, J. F. Currie, and R. A. Masut, J. Appl. Phys. 81, 1905 (1997); ΔE1∼1/E1, where ΔE1 is the field-induced redshift and E1 is the energy of the fundamental level measured with respect to the bottom of the quantum well.
-
(1997)
J. Appl. Phys.
, vol.81
, pp. 1905
-
-
Yip, R.Y.-F.1
Aït-Ouali, A.2
Bensaada, A.3
Desjardins, P.4
Beaudoin, M.5
Isnard, L.6
Brebner, J.L.7
Currie, J.F.8
Masut, R.A.9
-
7
-
-
85033176977
-
-
note
-
Unlike in the case for lasers, heavier effective masses are advantageous here.
-
-
-
-
8
-
-
85033171745
-
-
note
-
0) effective masses have been chosen to be representative of an InGaAsP alloy with a band gap energy in the 0.80-0.95 eV range and a lattice parameter near that of InP. The energy band curvature near zone center in the direction of the confinement potential (the growth axis) depends principally upon the band gap energy. Biaxial strain in the plane may significantly modify the band curvature normal to the growth axis but the effective masses in the direction of the confinement potential are expected to be fairly constant (±10%) over a range of alloy compositions, provided that the band gap energy remains in the desired range.
-
-
-
-
9
-
-
85033165297
-
-
in preparation
-
R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Aït-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, (in preparation). The expressions for these currents may be found in K. H. Grundlach, Solid-State Electron. 9, 949 (1966).
-
-
-
Yip, R.Y.-F.1
Desjardins, P.2
Isnard, L.3
Aït-Ouali, A.4
Marchand, H.5
Brebner, J.L.6
Currie, J.F.7
Masut, R.A.8
-
10
-
-
49949136555
-
-
R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Aït-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, (in preparation). The expressions for these currents may be found in K. H. Grundlach, Solid-State Electron. 9, 949 (1966).
-
(1966)
Solid-State Electron.
, vol.9
, pp. 949
-
-
Grundlach, K.H.1
-
11
-
-
33646704468
-
-
G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys. Rev. B 28, 3241 (1983).
-
(1983)
Phys. Rev. B
, vol.28
, pp. 3241
-
-
Bastard, G.1
Mendez, E.E.2
Chang, L.L.3
Esaki, L.4
-
12
-
-
85033159352
-
-
note
-
The enhancement of the redshift per unit field with decreasing barrier height is due to two mechanisms. (1) Lowering the barrier height lowers the zero-point energy of the quantum well eigenstate and enhances its sensitivity to the energy gradient. (2) The wave function penetration into the barrier under field is greater for lower barriers which decreases the degree of spatial localization of the eigenstate in the field distorted corner of the quantum well. By virtue of the uncertainty principle, such a state necessarily attains a lower zero-point energy than its counterpart in a quantum well with a higher barrier.
-
-
-
|