메뉴 건너뛰기




Volumn 16, Issue 2, 1999, Pages 145-155

Memory and neural network based expert system

Author keywords

Machine learning; Memory based reasoning; Neural network

Indexed keywords


EID: 0009594738     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0957-4174(98)00067-0     Document Type: Article
Times cited : (24)

References (38)
  • 1
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
    • Aha, D. W. (1992). Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. International Journal of Man-Machine Studies, 36 (1), 267-287.
    • (1992) International Journal of Man-Machine Studies , vol.36 , Issue.1 , pp. 267-287
    • Aha, D.W.1
  • 5
    • 34250080806 scopus 로고
    • A weighted nearest neighbor algorithm for learning with symbolic features
    • Cost, S., & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning, 10 (1), 57-78.
    • (1993) Machine Learning , vol.10 , Issue.1 , pp. 57-78
    • Cost, S.1    Salzberg, S.2
  • 6
    • 0031270141 scopus 로고    scopus 로고
    • Using neural networks for data mining
    • submitted; Data Mining
    • Craven, M. W., & Shavlik, J. W. (1997). Using neural networks for data mining. Future Generation Computer Systems (submitted; special issue on Data Mining).
    • (1997) Future Generation Computer Systems , Issue.SPEC. ISSUE
    • Craven, M.W.1    Shavlik, J.W.2
  • 9
    • 1342282223 scopus 로고    scopus 로고
    • Data preprocessing and intelligent data analysis
    • Famili, S.W., Weber, R., & Simoudis, E. (1997). Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1 (1) [http://www. elsevier.com/locate/ida].
    • (1997) Intelligent Data Analysis , vol.1 , Issue.1
    • Famili, S.W.1    Weber, R.2    Simoudis, E.3
  • 10
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Freidman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1-141.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Freidman, J.H.1
  • 11
    • 84937654251 scopus 로고
    • Applying machine learning to semiconductor manufacturing
    • Irani, K.B., Cheng, J., Fayyad, U. M., & Qian, Z. (1993). Applying machine learning to semiconductor manufacturing. IEEE Expert, 41-47.
    • (1993) IEEE Expert , pp. 41-47
    • Irani, K.B.1    Cheng, J.2    Fayyad, U.M.3    Qian, Z.4
  • 12
    • 0001315120 scopus 로고    scopus 로고
    • Hybrid machine learning system for integrated yield management in semiconductor manufacturing
    • Kang, B.S., Lee, J.H., Shin, C.K., You, S.J., & Park, S.C. (1998). Hybrid machine learning system for integrated yield management in semiconductor manufacturing. Expert Systems With Applications, 15, 123-132.
    • (1998) Expert Systems with Applications , vol.15 , pp. 123-132
    • Kang, B.S.1    Lee, J.H.2    Shin, C.K.3    You, S.J.4    Park, S.C.5
  • 13
    • 0025447562 scopus 로고
    • A simple procedure for pruning back-propagation trained neural networks
    • Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained neural networks. IEEE Trans. Neural Networks, 1 (2), 239-242.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.2 , pp. 239-242
    • Karnin, E.D.1
  • 14
    • 0011754884 scopus 로고    scopus 로고
    • The utility of feature weighting in nearest-neighbor algorithms
    • Kohavi, R., Langley, P., & Yun, Y. (1997). The utility of feature weighting in nearest-neighbor algorithms. In: Proc. ECML-97.
    • (1997) Proc. ECML-97.
    • Kohavi, R.1    Langley, P.2    Yun, Y.3
  • 17
    • 9344230065 scopus 로고
    • Rule extraction from neural networks: Enhancing the explanation capability
    • Park, S. C., Lam, S. M., & Gupta, A. (1995). Rule extraction from neural networks: enhancing the explanation capability. Journal of Expert Systems, 2, 57-71.
    • (1995) Journal of Expert Systems , vol.2 , pp. 57-71
    • Park, S.C.1    Lam, S.M.2    Gupta, A.3
  • 18
    • 85162801823 scopus 로고
    • An iterative improvement approach for the discreti-zation of numeric attributes in Bayesian classifiers
    • CA: AAAI Press
    • Pazzani, M.P. (1995). An iterative improvement approach for the discreti-zation of numeric attributes in Bayesian classifiers. Proc. First International Conference on Knowledge Discovery and Datamining (pp. 228-233). CA: AAAI Press.
    • (1995) Proc. First International Conference on Knowledge Discovery and Datamining , pp. 228-233
    • Pazzani, M.P.1
  • 21
    • 85144600007 scopus 로고
    • Combining instance-based and model-based learning
    • San Mateo, CA: Morgan Kaufmann
    • Quinlan, J.R. (1993). Combining instance-based and model-based learning. In: Proc. Machine Learning '92. San Mateo, CA: Morgan Kaufmann.
    • (1993) Proc. Machine Learning '92
    • Quinlan, J.R.1
  • 22
    • 0001495905 scopus 로고
    • Learning with continuous classes
    • Adams & Sterling (Eds.)
    • Quinlan, J.R. (1992b). Learning with continuous classes. In: Adams & Sterling (Eds.), Proc. AI '92,. (pp. 343-348).
    • (1992) Proc. AI '92 , pp. 343-348
    • Quinlan, J.R.1
  • 24
    • 84947749103 scopus 로고
    • Using a neural network to learn general knowledge in a case-based system
    • Aamodt, A., & Veloso, M. (Eds.)
    • Reategui, E., Campbell, J.A., & Borghetti, S. (1995). Using a neural network to learn general knowledge in a case-based system. In: Aamodt, A., & Veloso, M. (Eds.), Proc. ICCBR-95 (pp. 528-537).
    • (1995) Proc. ICCBR-95 , pp. 528-537
    • Reategui, E.1    Campbell, J.A.2    Borghetti, S.3
  • 25
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • Reed, R. (1993). Pruning algorithms - A survey. IEEE Trans. Neural Networks, 4 (5), 740-747.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 26
    • 85034535885 scopus 로고    scopus 로고
    • Rulequest Research (1997). An overview of Cubist [http://www.nilequest. com].
    • (1997) An Overview of Cubist
  • 28
    • 0031140388 scopus 로고    scopus 로고
    • Neural-network feature selector
    • Setiono, R., & Liu, H. (1997). Neural-network feature selector. IEEE Trans. Neural Networks, 8 (3), 654-662.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 654-662
    • Setiono, R.1    Liu, H.2
  • 31
    • 0002350057 scopus 로고
    • IBM Burlington's logistics management system
    • Sullivan, G., & Fordyce, K. (1990). IBM Burlington's logistics management system. Interfaces, 20 (1), 43-64.
    • (1990) Interfaces , vol.20 , Issue.1 , pp. 43-64
    • Sullivan, G.1    Fordyce, K.2
  • 32
  • 35
    • 84952240555 scopus 로고
    • A review of production planning and scheduling models in the semiconductor industry, Part I: System characteristics, performance evaluation and production planning
    • Uzsoy, R., Lee, C., & Martin-Vega, L. A. (1992). A review of production planning and scheduling models in the semiconductor industry, Part I: System characteristics, performance evaluation and production planning. IIE Transactions, 24 (4), 47-60.
    • (1992) IIE Transactions , vol.24 , Issue.4 , pp. 47-60
    • Uzsoy, R.1    Lee, C.2    Martin-Vega, L.A.3
  • 37
    • 84947788882 scopus 로고
    • Weighting features
    • Aamodt, A., & Veloso, M. (Eds.)
    • Wettschereck, D., & Aha, D.W. (1995). Weighting features. In: Aamodt, A., & Veloso, M. (Eds.), Proc. of ICCBR-95 (pp. 347-358).
    • (1995) Proc. of ICCBR-95 , pp. 347-358
    • Wettschereck, D.1    Aha, D.W.2
  • 38
    • 0002564447 scopus 로고
    • An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms
    • Wettschereck, D., & Dietterich, T. (1995). An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms. Machine Learning, 19, 5-27.
    • (1995) Machine Learning , vol.19 , pp. 5-27
    • Wettschereck, D.1    Dietterich, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.