-
2
-
-
0010138259
-
Uncertainty principles and sampling theorems
-
J. F. Price, ed. (Plenum, New York
-
J. F. Price, “Uncertainty principles and sampling theorems,” in Fourier Techniques and Applications, J. F. Price, ed. (Plenum, New York, 1985), pp. 25–44.
-
(1985)
Fourier Techniques and Applications
, pp. 25-44
-
-
Price, J.F.1
-
3
-
-
0001871334
-
Uncertainty principies in Fourier analysis
-
O. Shisha, ed. (Academic, New York
-
N. G. De Bruijn, “Uncertainty principies in Fourier analysis,” in Inequalities, O. Shisha, ed. (Academic, New York, 1967), pp. 57–71.
-
(1967)
Inequalities
, pp. 57-71
-
-
De Bruijn, N.G.1
-
4
-
-
0000684635
-
Semi-classical mechanics in phase space: A study of Wigners function
-
M. V. Berry, “Semi-classical mechanics in phase space: a study of Wigner’s function,” Philos. Trans. R. Soc. London 287, 237–271 (1977).
-
(1977)
Philos. Trans. R. Soc. London
, vol.287
, pp. 237-271
-
-
Berry, M.V.1
-
5
-
-
0001459024
-
Evolution of semiclassical quantum states in phase space
-
M. V. Berry and N. L. Balasz, “Evolution of semiclassical quantum states in phase space,” J. Phys. A 12, 625–642 (1979).
-
(1979)
J. Phys. A
, vol.12
, pp. 625-642
-
-
Berry, M.V.1
Balasz, N.L.2
-
6
-
-
0000944441
-
Quantum scars of classical closed orbits in phase space
-
M. V. Berry, “Quantum scars of classical closed orbits in phase space,” Proc. R. Soc. London Ser. A 423, 219–231 (1989).
-
(1989)
Proc. R. Soc. London Ser. A
, vol.423
, pp. 219-231
-
-
Berry, M.V.1
-
8
-
-
33745014742
-
On the correction for thermodynamic equilibrium
-
E. Wigner, “On the correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932).
-
(1932)
Phys. Rev.
, vol.40
, pp. 749-759
-
-
Wigner, E.1
-
9
-
-
85010171495
-
Radiometry and coherence
-
The WDF for an optical field was first proposed in A. Walther
-
The WDF for an optical field was first proposed in A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968).
-
(1968)
J. Opt. Soc. Am.
, vol.58
, pp. 1256-1259
-
-
-
10
-
-
85010152413
-
Handbook of Mathematical Functions (Dover, New York
-
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), Sec. 10.4.
-
(1965)
Sec
, vol.10
, pp. 4
-
-
Abramowitz, M.1
Stegun, I.A.2
-
11
-
-
0003733873
-
-
(Prentice-Hall PTR, Englewood Cliffs, N.J
-
L. Cohen, Time-Frequency Analysis (Prentice-Hall PTR, Englewood Cliffs, N.J., 1995), pp. 93–112.
-
(1995)
Time-Frequency Analysis
, pp. 93-112
-
-
Cohen, L.1
-
13
-
-
4243204256
-
Quantum mechanics in phase space: New approaches to the correspondence principle
-
G. Torres-Vega, J. H. Frederick, “Quantum mechanics in phase space: new approaches to the correspondence principle,” J. Chem. Phys. 93, 8862–8874 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 8862-8874
-
-
Torres-Vega, G.1
Frederick, J.H.2
-
14
-
-
4243274202
-
A quantum mechanical representation in phase space
-
G. Torres-Vega, J. H. Frederick, “A quantum mechanical representation in phase space,” J. Chem. Phys. 98, 3103–3120 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 3103-3120
-
-
Torres-Vega, G.1
Frederick, J.H.2
-
15
-
-
0001575475
-
A quantum state vector phase space representation
-
J. E. Harriman, “A quantum state vector phase space representation,” J. Chem. Phys. 100, 3651–3661 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 3651-3661
-
-
Harriman, J.E.1
-
16
-
-
0038246362
-
On coherent-state representations of quantum mechanics: Wave mechanics in phase space
-
K. B. Moller, T. G. Jorgensen, and G. Torres-Vega, “On coherent-state representations of quantum mechanics: wave mechanics in phase space,” J. Chem. Phys. 106, 7228–7240 (1997).
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 7228-7240
-
-
Moller, K.B.1
Jorgensen, T.G.2
Torres-Vega, G.3
-
17
-
-
84980077803
-
On a Hilbert space of analytic functions and an associated integral transform
-
V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform,” Commun. Pure Appl. Math. 14, 187–214 (1961).
-
(1961)
Commun. Pure Appl. Math.
, vol.14
, pp. 187-214
-
-
Bargmann, V.1
-
18
-
-
4243870641
-
Theory and application of the quantum phase-space distribution functions
-
H. W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147–211 (1995).
-
(1995)
Phys. Rep.
, vol.259
, pp. 147-211
-
-
Lee, H.W.1
-
19
-
-
0003733873
-
-
(Prentice-Hall PTR, Englewood Cliffs, N.J., Chap. 7
-
L. Cohen, Time-Frequency Analysis (Prentice-Hall PTR, Englewood Cliffs, N.J., 1995), Chap. 7, pp. 93–100.
-
(1995)
Time-Frequency Analysis
, pp. 93-100
-
-
Cohen, L.1
-
21
-
-
84975960876
-
An extension of the method of steepest descents
-
C. Chester, B. Friedman, and F. Ursell, “An extension of the method of steepest descents,” Proc. Cambridge Philos. Soc. 53, 599–611 (1957).
-
(1957)
Proc. Cambridge Philos. Soc.
, vol.53
, pp. 599-611
-
-
Chester, C.1
Friedman, B.2
Ursell, F.3
-
22
-
-
0037908811
-
Uniform approximation: A new concept in wave theory
-
M. V. Berry, “Uniform approximation: a new concept in wave theory,” Sci. Prog. (Oxford) 57, 43–64 (1969).
-
(1969)
Sci. Prog. (Oxford)
, vol.57
, pp. 43-64
-
-
Berry, M.V.1
-
24
-
-
0000950371
-
On the intensity of light in a neighbourhood of a caustic
-
G. B. Airy, “On the intensity of light in a neighbourhood of a caustic,” Trans. Cambridge Philos. Soc. 6, 379–403 (1838).
-
(1838)
Trans. Cambridge Philos. Soc.
, vol.6
, pp. 379-403
-
-
Airy, G.B.1
-
26
-
-
0001515953
-
Immersion of the Fourier transform in a continuous group of functional transformations
-
E. U. Condon, “Immersion of the Fourier transform in a continuous group of functional transformations,” Proc. Natl. Acad. Sci. USA 23, 158–164 (1937).
-
(1937)
Proc. Natl. Acad. Sci. USA
, vol.23
, pp. 158-164
-
-
Condon, E.U.1
-
27
-
-
77957719167
-
Introduction to the fractional Fourier transform and its applications
-
P. W. Hawkes, ed. (Academic, San Diego, Calif
-
H. M. Ozaktas, M. A. Kutay, and D. Mendlovic, “Introduction to the fractional Fourier transform and its applications,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Academic, San Diego, Calif., 1999), Vol. 106, pp. 239–291.
-
(1999)
Advances in Imaging and Electron Physics
, vol.106
, pp. 239-291
-
-
Ozaktas, H.M.1
Kutay, M.A.2
Mendlovic, D.3
-
28
-
-
0027682286
-
Image rotation, Wigner rotation, and the fractional Fourier transform
-
A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
-
(1993)
J. Opt. Soc. Am.
, vol.A10
, pp. 2181-2186
-
-
Lohmann, A.W.1
-
29
-
-
0001606283
-
The fractional Fourier transform and the Wigner distribution
-
D. Mustard, “The fractional Fourier transform and the Wigner distribution,” J. Aust. Math. Soc. B 38, 209–219 (1996).
-
(1996)
J. Aust. Math. Soc. B
, vol.38
, pp. 209-219
-
-
Mustard, D.1
-
30
-
-
0033239729
-
New approach to semiclassical analysis in mechanics
-
M. A. Alonso and G. W. Forbes, “New approach to semiclassical analysis in mechanics,” J. Math. Phys. 40, 1699–1718 (1999).
-
(1999)
J. Math. Phys.
, vol.40
, pp. 1699-1718
-
-
Alonso, M.A.1
Forbes, G.W.2
-
31
-
-
84893994521
-
Using rays better. I. Theory for smoothly varying media
-
(to be published)
-
G. W. Forbes and M. A. Alonso, “Using rays better. I. Theory for smoothly varying media,” J. Opt. Soc. Am. A (to be published).
-
J. Opt. Soc. Am.
, vol.A
-
-
Forbes, G.W.1
Alonso, M.A.2
-
32
-
-
84893986039
-
Using rays better. III. Error estimates and illustrative applications in smooth media
-
(to be published)
-
M. A. Alonso and G. W. Forbes, “Using rays better. III. Error estimates and illustrative applications in smooth media,” submitted to J. Opt. Soc. Am. A (to be published).
-
Submitted to J. Opt. Soc. Am.
, vol.A
-
-
Alonso, M.A.1
Forbes, G.W.2
-
33
-
-
49249146140
-
Quantum maps
-
M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, “Quantum maps,” Ann. Phys. (N.Y.) 122, 26–63 (1979).
-
(1979)
Ann. Phys. (N.Y.)
, vol.122
, pp. 26-63
-
-
Berry, M.V.1
Balazs, N.L.2
Tabor, M.3
Voros, A.4
-
34
-
-
49049151215
-
Evolution of Wigners phase space density under a nonintegrable quantum map
-
H. J. Korsch and M. V. Berry, “Evolution of Wigner’s phase space density under a nonintegrable quantum map,” Physica D 3D, 627–636 (1981).
-
(1981)
Physica D
, vol.3D
, pp. 627-636
-
-
Korsch, H.J.1
Berry, M.V.2
-
35
-
-
0002527909
-
Semiclassical approximations
-
A. Voros, “Semiclassical approximations,” Ann. Inst. Henri Poincare 14, 31–90 (1976).
-
(1976)
Ann. Inst. Henri Poincare
, vol.14
, pp. 31-90
-
-
Voros, A.1
-
36
-
-
0039486845
-
Phase space projection identities for diffraction catastrophes
-
M. V. Berry and F. J. Wright, “Phase space projection identities for diffraction catastrophes,” J. Phys. A 13, 149–160 (1980).
-
(1980)
J. Phys. A
, vol.13
, pp. 149-160
-
-
Berry, M.V.1
Wright, F.J.2
-
37
-
-
49049136497
-
Geometry of two dimensional tori in phase space: Projections, sections and the Wigner function
-
A. M. Ozorio de Almeida and J. H. Hannay, “Geometry of two dimensional tori in phase space: projections, sections and the Wigner function,” Ann. Phys. (N.Y.) 138, 115–154 (1982).
-
(1982)
Ann. Phys. (N.Y.)
, vol.138
, pp. 115-154
-
-
Ozorio De Almeida, A.M.1
Hannay, J.H.2
-
38
-
-
0000818498
-
Wentzel-Kramers-Brillouin method in the Bargmann representation
-
A. Voros, “Wentzel-Kramers-Brillouin method in the Bargmann representation,” Phys. Rev. A 40, 6814–6825 (1989).
-
(1989)
Phys. Rev. A
, vol.40
, pp. 6814-6825
-
-
Voros, A.1
|