-
1
-
-
0001254751
-
-
V. Fock, Z. Phys. 49, 339 (1928).
-
(1928)
Z. Phys.
, vol.49
, pp. 339
-
-
Fock, V.1
-
7
-
-
34547303281
-
-
M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).
-
(1984)
Phys. Rep.
, vol.106
, pp. 121
-
-
Hillery, M.1
O'Connell, R.F.2
Scully, M.O.3
Wigner, E.P.4
-
15
-
-
5744254150
-
-
edited by D. Ban, Y. S. Kim, N. M. Rubin, Y. Shih, and W. W. Zachary NASA, Maryland
-
Go. Torres-Vega, in Third International Workshop on Squeezed States and Uncertainty Relations, edited by D. Ban, Y. S. Kim, N. M. Rubin, Y. Shih, and W. W. Zachary (NASA, Maryland, 1994), pp. 275-280.
-
(1994)
Third International Workshop on Squeezed States and Uncertainty Relations
, pp. 275-280
-
-
Torres-Vega, Go.1
-
26
-
-
0039220166
-
-
For a discussion of simultaneous measurements of non-commuting observables in terms of the precise mathematical concepts "fuzzy sets" and "fuzzy measures," see e.g., E. Prugoveôki, Found. Phys. 3, 3 (1973) and E. B. Davies and J. T. Lewis, Commun. Math. Phys. 17, 239 (1970).
-
(1973)
Found. Phys.
, vol.3
, pp. 3
-
-
Prugoveôki, E.1
-
27
-
-
34250495765
-
-
For a discussion of simultaneous measurements of non-commuting observables in terms of the precise mathematical concepts "fuzzy sets" and "fuzzy measures," see e.g., E. Prugoveôki, Found. Phys. 3, 3 (1973) and E. B. Davies and J. T. Lewis, Commun. Math. Phys. 17, 239 (1970).
-
(1970)
Commun. Math. Phys.
, vol.17
, pp. 239
-
-
Davies, E.B.1
Lewis, J.T.2
-
28
-
-
5744245788
-
-
note
-
This should be compared with, for instance, the position-space representation where the square magnitude of the wave function can be used to calculate the expectation value of any operator that is a function of the position operator. This is due to the fact that any such operator is multiplicative in the position-space representation. Since neither the position nor the momentum operator is multiplicative in a CSR it is not obvious whether the square magnitude of the phase-space wave function can be used in a similar way.
-
-
-
-
30
-
-
84926142760
-
-
edited by H. D. Doebner, W. Scherer, and F. Schroeck, Jr. World Scientific, Singapore
-
J. P. Dahl, in Classical and Quantum Systems: Foundations and Symmetries, Proceedings of the II International Wigner Symposium, edited by H. D. Doebner, W. Scherer, and F. Schroeck, Jr. (World Scientific, Singapore, 1993), pp. 420-423.
-
(1993)
Classical and Quantum Systems: Foundations and Symmetries, Proceedings of the II International Wigner Symposium
, pp. 420-423
-
-
Dahl, J.P.1
-
31
-
-
0002531059
-
-
edited by E. S. Kryachko and J. L. Calais Kluwer Academic Publishers, Amsterdam
-
J. P. Dahl, in Conceptual Trends in Quantum Chemistry, edited by E. S. Kryachko and J. L. Calais (Kluwer Academic Publishers, Amsterdam, 1994), pp. 199-226.
-
(1994)
Conceptual Trends in Quantum Chemistry
, pp. 199-226
-
-
Dahl, J.P.1
-
35
-
-
0003580854
-
-
Pergamon Press Ltd., Oxford
-
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Vol. 3 of Course of Theoretical Physics, 3rd ed. (Pergamon Press Ltd., Oxford, 1977).
-
(1977)
Quantum Mechanics, Vol. 3 of Course of Theoretical Physics, 3rd Ed.
, vol.3
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
38
-
-
5744253326
-
-
note
-
This should be contrasted with the Wigner density which always behaves classically in the potential Eq. (67).
-
-
-
-
39
-
-
5744250718
-
-
edited by D. Han, Y. S. Kim, and W. Zachary NASA, Maryland
-
J. R. Klauder, in Workshop on Harmonic Oscillators, edited by D. Han, Y. S. Kim, and W. Zachary (NASA, Maryland, 1993), pp. 19-28.
-
(1993)
Workshop on Harmonic Oscillators
, pp. 19-28
-
-
Klauder, J.R.1
-
40
-
-
5744227575
-
-
note
-
The analysis of Klauder only involves the explicit (Latin small letter h with stroke sign) dependence in the equations of motion and is therefore appropriate if the (Latin small letter h with stroke sign) dependence of the initial phase-space density is ignored. See also Ref. 32.
-
-
-
|