-
1
-
-
0001305569
-
The Hausdorff dimension distribution of finite measures in Euclidean space
-
CUTLER, C. D.: The Hausdorff Dimension Distribution of Finite Measures in Euclidean Space, Canad. J. Math. 38 (1986), 1459-1484
-
(1986)
Canad. J. Math.
, vol.38
, pp. 1459-1484
-
-
Cutler, C.D.1
-
2
-
-
0002554107
-
Multifractal measures, appendix B
-
H-O. PEITGEN, H. JÜRGENS and D. SAUPE, Springer-Verlag
-
EVERTZ, C. J. G., and MANDELBROT, B.: Multifractal Measures, Appendix B. In: H-O. PEITGEN, H. JÜRGENS and D. SAUPE, Chaos and Fractals, Springer-Verlag, 1992
-
(1992)
Chaos and Fractals
-
-
Evertz, C.J.G.1
Mandelbrot, B.2
-
5
-
-
21444454260
-
Packing dimensions of projections and dimension profiles
-
FALCONER, K. J., and HOWROYD, J. D.: Packing Dimensions of Projections and Dimension Profiles, Math. Proc. Cambridge Philos. Soc. 121 (1997), 269-286
-
(1997)
Math. Proc. Cambridge Philos. Soc.
, vol.121
, pp. 269-286
-
-
Falconer, K.J.1
Howroyd, J.D.2
-
6
-
-
21344448576
-
The packing dimensions of projections and sections of measures
-
FALCONER, K. J., and MATTILA, P.: The Packing Dimensions of Projections and Sections of Measures, Math. Proc. Cambridge Philos. Soc. 119 (1996), 695-713
-
(1996)
Math. Proc. Cambridge Philos. Soc.
, vol.119
, pp. 695-713
-
-
Falconer, K.J.1
Mattila, P.2
-
7
-
-
48749149528
-
Generalised dimension of strange attractors
-
GRASSBERGER, P.: Generalised Dimension of Strange Attractors, Phys. Rev. Lett. A 97 (1983), 227-230
-
(1983)
Phys. Rev. Lett. A
, vol.97
, pp. 227-230
-
-
Grassberger, P.1
-
8
-
-
33646981873
-
Characterization of strange attractors
-
GRASSBERGER, P., and PROCACCIA, I.: Characterization of Strange Attractors, Phys. Rev. Lett. 50 (1983), 346-349
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 346-349
-
-
Grassberger, P.1
Procaccia, I.2
-
9
-
-
0001464903
-
How projections affect the dimensions of fractal measures
-
HUNT, V. Y., and KALOSHIN, B. R.: How Projections Affect the Dimensions of Fractal Measures, Nonlinearity 10 (1997), 1031-1046
-
(1997)
Nonlinearity
, vol.10
, pp. 1031-1046
-
-
Hunt, V.Y.1
Kaloshin, B.R.2
-
10
-
-
0346372923
-
The infinite number of generalised dimensions of fractals and strange attractors
-
HENTSCHEL, H., and PROCACCIA, I.: The Infinite Number of Generalised Dimensions of Fractals and Strange Attractors, Physica D 8 (1983), 435-444
-
(1983)
Physica D
, vol.8
, pp. 435-444
-
-
Hentschel, H.1
Procaccia, I.2
-
14
-
-
0009126883
-
p -spectrum and multifractal formalism
-
C. BANDT, S. GRAF and M. ZÄHLE (eds), Birkhäuser
-
p -Spectrum and Multifractal Formalism. In: Fractal Geometry and Stochastics, C. BANDT, S. GRAF and M. ZÄHLE (eds), pp. 55-90, Birkhäuser, 1995
-
(1995)
Fractal Geometry and Stochastics
, pp. 55-90
-
-
Lau, K.-S.1
-
15
-
-
45149136697
-
Negative fractal dimensions and multifractals
-
MANDELBROT, B.: Negative Fractal Dimensions and Multifractals, Physica A 163 (1990), 306-315
-
(1990)
Physica A
, vol.163
, pp. 306-315
-
-
Mandelbrot, B.1
-
16
-
-
0000367680
-
Hausdorff dimension, orthogonal projections and intersections with planes
-
MATTILA, P.: Hausdorff Dimension, Orthogonal Projections and Intersections with Planes, Annales Acad. Sci. Fen. A 1 (1975), 227-244
-
(1975)
Annales Acad. Sci. Fen. A
, vol.1
, pp. 227-244
-
-
Mattila, P.1
-
18
-
-
85027614017
-
A multifractal formalism
-
OLSEN, L.: A Multifractal Formalism, Adv. Math. 116 (1995), 82-196
-
(1995)
Adv. Math.
, vol.116
, pp. 82-196
-
-
Olsen, L.1
-
20
-
-
0040501288
-
The multifractal spectra of projected measures in Euclidean space
-
to appear
-
O'NEIL, T. C.: The Multifractal Spectra of Projected Measures in Euclidean Space, to appear, Chaos, Solitons and Fractals
-
Chaos, Solitons and Fractals
-
-
O'Neil, T.C.1
-
22
-
-
58149362177
-
An improved multifractal formalism and self-similar measures
-
RIEDI, R.: An Improved Multifractal Formalism and Self-Similar Measures, J. Math. Anal. Appl. 189 (1995), 462-490
-
(1995)
J. Math. Anal. Appl.
, vol.189
, pp. 462-490
-
-
Riedi, R.1
-
23
-
-
21344474524
-
n
-
n, Fractals 3 (1995), 747-754
-
(1995)
Fractals
, vol.3
, pp. 747-754
-
-
Zähle, M.1
|