메뉴 건너뛰기




Volumn 115, Issue 1-2, 2000, Pages 495-502

Quintic C2 -spline integration methods for solving second-order ordinary initial value problems

Author keywords

56D05; 65L06; Absolute stability; Collocation method; Periodic stability; Quintic spline; Second order initial value problem

Indexed keywords


EID: 0004906061     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-0427(99)00174-0     Document Type: Article
Times cited : (11)

References (12)
  • 1
    • 0021295439 scopus 로고
    • Numerov made explicit has better stability
    • Chawla M.M. Numerov made explicit has better stability. BIT. 24:1984;117-118.
    • (1984) BIT , vol.24 , pp. 117-118
    • Chawla, M.M.1
  • 2
    • 0032498770 scopus 로고    scopus 로고
    • A two-stage fourth-order "almost" P -stable method for oscillatory problems
    • Chawla M.M., Al-Zanaidi M.A. A two-stage fourth-order "almost" P -stable method for oscillatory problems J. Comput. Appl. Math. 89:1998;115-118.
    • (1998) J. Comput. Appl. Math. , vol.89 , pp. 115-118
    • Chawla, M.M.1    Al-Zanaidi, M.A.2
  • 3
    • 0001330331 scopus 로고
    • Numerical methods for y″=f(x,y) via rational approximations for the cosine
    • Coleman J.P. Numerical methods for. y″=f(x,y) via rational approximations for the cosine IMA J. Numer. Anal. 9:1989;145-165.
    • (1989) IMA J. Numer. Anal. , vol.9 , pp. 145-165
    • Coleman, J.P.1
  • 6
    • 0011895293 scopus 로고
    • Multi-step methods are essentially one-step methods
    • Kirchgraber U. Multi-step methods are essentially one-step methods. Numer. Math. 48:1986;85-90.
    • (1986) Numer. Math. , vol.48 , pp. 85-90
    • Kirchgraber, U.1
  • 7
    • 0000657979 scopus 로고
    • Stability of collocation methods for the numerical solution of y″ = f(x,y)
    • Kramarz L. Stability of collocation methods for the numerical solution of. y″ = f(x,y) BIT. 20:1980;215-222.
    • (1980) BIT , vol.20 , pp. 215-222
    • Kramarz, L.1
  • 8
    • 84968481505 scopus 로고
    • (2) = f(x,y) with spline functions
    • (2) = f(x,y) with spline functions Math. Comp. 27:1973;807-816.
    • (1973) Math. Comp. , vol.27 , pp. 807-816
    • Micala, Gh.1
  • 9
    • 0002174642 scopus 로고
    • Splines and collocation for ordinary initial value problems
    • in: S.P. Singh et al. (Eds.) Reidel, Dordrecht
    • S.P. N ø rsett, Splines and collocation for ordinary initial value problems, in: S.P. Singh et al. (Eds.), Approximation Theory and Spline Functions, Reidel, Dordrecht, 1984, pp. 397-417.
    • (1984) Approximation Theory and Spline Functions , pp. 397-417
    • Nørsett, S.P.1
  • 10
    • 0030285138 scopus 로고    scopus 로고
    • 3 -spline collocation method for solving second-order initial value problems
    • 3 -spline collocation method for solving second-order initial value problems J. Comput . Appl. Math. 75:1996;295-304.
    • (1996) J. Comput . Appl. Math. , vol.75 , pp. 295-304
    • Sallam, S.1    Karaballi, A.A.2
  • 11
    • 38249033341 scopus 로고
    • A note on a diagonally implicit Runge-Kutta-Nyström method
    • Sommeijer B.P. A note on a diagonally implicit Runge-Kutta-Nyström method. J. Comput. Appl. Math. 19:1987;395-399.
    • (1987) J. Comput. Appl. Math. , vol.19 , pp. 395-399
    • Sommeijer, B.P.1
  • 12
    • 0023366337 scopus 로고
    • Explicit Runge-Kutta-Nyström methods with reduced phase errors for computing oscillating solutions
    • Van der Houwen P.J., Sommeijer B.P. Explicit Runge-Kutta-Nyström methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24:1987;595-617.
    • (1987) SIAM J. Numer. Anal. , vol.24 , pp. 595-617
    • Van Der Houwen, P.J.1    Sommeijer, B.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.