-
1
-
-
0000834834
-
The problem of the convergence of the iteratively regularized Gauss-Newton method
-
A. B. BAKUSHINSKII, The problem of the convergence of the iteratively regularized Gauss-Newton method, Comput. Math. Math. Phys., 32 (1992), pp. 1353-1359.
-
(1992)
Comput. Math. Math. Phys.
, vol.32
, pp. 1353-1359
-
-
Bakushinskii, A.B.1
-
2
-
-
0031532935
-
On convergence rates for the iteratively regularized Gauss-Newton method
-
B. BLASCHKE, A. NEUBAUER, AND O. SCHERZER, On convergence rates for the iteratively regularized Gauss-Newton method, IMA J. Numer. Anal., 17 (1997), pp. 421-436.
-
(1997)
IMA J. Numer. Anal.
, vol.17
, pp. 421-436
-
-
Blaschke, B.1
Neubauer, A.2
Scherzer, O.3
-
4
-
-
0003531188
-
-
Kluwer Academic Publishers, Dordrecht, Boston, London
-
H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
-
(1996)
Regularization of Inverse Problems
-
-
Engl, H.W.1
Hanke, M.2
Neubauer, A.3
-
5
-
-
0000153088
-
Scattering and inverse scattering of sound-hard obstacles via shape deformation
-
D. N. GHOSH ROY, L. COUCHMAN, AND J. WARNER, Scattering and inverse scattering of sound-hard obstacles via shape deformation, Inverse Problems, 13 (1997), pp. 585-606.
-
(1997)
Inverse Problems
, vol.13
, pp. 585-606
-
-
Ghosh Roy, D.N.1
Couchman, L.2
Warner, J.3
-
6
-
-
33749473352
-
The Landweber iteration for an inverse scattering problem
-
K. W. Wang et al., eds., ASME, New York
-
M. HANKE, F. HETTLICH, AND O. SCHERZER, The Landweber iteration for an inverse scattering problem, in Proc. 1995 Design Engineering Technical Conferences, Vol. 3, Part C, K. W. Wang et al., eds., ASME, New York, 1995, pp. 909-915.
-
(1995)
Proc. 1995 Design Engineering Technical Conferences
, vol.3
, Issue.PART C
, pp. 909-915
-
-
Hanke, M.1
Hettlich, F.2
Scherzer, O.3
-
7
-
-
36149029023
-
Frechet derivatives in inverse obstacle scattering
-
F. HETTLICH, Frechet derivatives in inverse obstacle scattering, Inverse Problems, 11 (1995), pp. 371-382.
-
(1995)
Inverse Problems
, vol.11
, pp. 371-382
-
-
Hettlich, F.1
-
9
-
-
0000670255
-
Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem
-
T. HOHAGE, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems, 13 (1997), pp. 1279-1299.
-
(1997)
Inverse Problems
, vol.13
, pp. 1279-1299
-
-
Hohage, T.1
-
10
-
-
0024767153
-
Surface gradients and continuity properties for some integral operators in classical scattering theory
-
A. KIRSCH, Surface gradients and continuity properties for some integral operators in classical scattering theory, Math. Methods Appl. Sci., 11 (1989), pp. 789-804.
-
(1989)
Math. Methods Appl. Sci.
, vol.11
, pp. 789-804
-
-
Kirsch, A.1
-
12
-
-
0042887888
-
A Newton method in inverse obstacle scattering
-
Bui et al., eds., Balkema, Rotterdam
-
R. KRESS, A Newton method in inverse obstacle scattering, in Inverse Problems in Engineering Mechanics, Bui et al., eds., Balkema, Rotterdam, 1994, pp. 425-432.
-
(1994)
Inverse Problems in Engineering Mechanics
, pp. 425-432
-
-
Kress, R.1
-
13
-
-
0000015833
-
On the numerical solution of a hypersingular integral equation in scattering theory
-
R. KRESS, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), pp. 345-360.
-
(1995)
J. Comput. Appl. Math.
, vol.61
, pp. 345-360
-
-
Kress, R.1
-
14
-
-
0003114885
-
Integral equation methods in inverse acoustic and electromagnetic scattering
-
D. B. Ingham and L. C. Wrobel, eds., Computational Mechanics Publications, Southampton
-
R. KRESS, Integral equation methods in inverse acoustic and electromagnetic scattering, in Boundary Integral Formulations for Inverse Analysis, D. B. Ingham and L. C. Wrobel, eds., Computational Mechanics Publications, Southampton, 1997, pp. 67-92.
-
(1997)
Boundary Integral Formulations for Inverse Analysis
, pp. 67-92
-
-
Kress, R.1
-
16
-
-
4243333658
-
A Newton method for solving the inverse scattering problem for a sound-hard obstacle
-
L. MÖNCH, A Newton method for solving the inverse scattering problem for a sound-hard obstacle, Inverse Problems, 12 (1996), pp. 309-325.
-
(1996)
Inverse Problems
, vol.12
, pp. 309-325
-
-
Mönch, L.1
-
17
-
-
0011003853
-
Newton-Kantorovich method applied to two-dimensional inverse scattering for an exterior Hełmholtz problem
-
R. D. MURGH, D. G. H. TAN, AND D. J. N. WALL, Newton-Kantorovich method applied to two-dimensional inverse scattering for an exterior Hełmholtz problem, Inverse Problems, 4 (1988), pp. 1117-1128.
-
(1988)
Inverse Problems
, vol.4
, pp. 1117-1128
-
-
Murgh, R.D.1
Tan, D.G.H.2
Wall, D.J.N.3
-
18
-
-
0008961088
-
Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain
-
R. POTTHAST, Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain, J. Inverse Ill-Posed Prob., 4 (1996), pp. 67-84.
-
(1996)
J. Inverse Ill-Posed Prob.
, vol.4
, pp. 67-84
-
-
Potthast, R.1
-
19
-
-
0032047113
-
Optimality for linear ill-posed problems under general source conditions
-
U. TAUTENHAHN, Optimality for linear ill-posed problems under general source conditions, Numer. Funct. Anal. Optim., 19 (1998), pp. 377-398.
-
(1998)
Numer. Funct. Anal. Optim.
, vol.19
, pp. 377-398
-
-
Tautenhahn, U.1
-
21
-
-
0024933116
-
Inverse acoustic wave scattering in two dimensions from impenetrable targets
-
W. TOBOCMAN, Inverse acoustic wave scattering in two dimensions from impenetrable targets, Inverse Problems, 5 (1989), pp. 1131-1144.
-
(1989)
Inverse Problems
, vol.5
, pp. 1131-1144
-
-
Tobocman, W.1
|