-
6
-
-
0028462894
-
-
R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, Appl. Phys. B: Lasers Opt. 59, 73 (1994).
-
(1994)
Appl. Phys. B: Lasers Opt.
, vol.59
, pp. 73
-
-
Esenaliev, R.O.1
Karabutov, A.A.2
Podymova, N.B.3
Letokhov, V.S.4
-
11
-
-
0030048398
-
-
B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, Lasers Surg. Med. 18, 10 (1996).
-
(1996)
Lasers Surg. Med.
, vol.18
, pp. 10
-
-
Gerstman, B.S.1
Thompson, C.R.2
Jacques, S.L.3
Rogers, M.E.4
-
13
-
-
0025556228
-
-
A. Vogel, P. Schweiger, A. Frieser, M. Asiyo, and R. Birngruber, IEEE J. Quantum Electron. 26, 2240 (1990).
-
(1990)
IEEE J. Quantum Electron.
, vol.26
, pp. 2240
-
-
Vogel, A.1
Schweiger, P.2
Frieser, A.3
Asiyo, M.4
Birngruber, R.5
-
15
-
-
5644282832
-
-
P. Teng, N. S. Nishioka, R. R. Anderson, and T. F. Deutsch, IEEE J. Quantum Electron. 23, 1845 (1987).
-
(1987)
IEEE J. Quantum Electron.
, vol.23
, pp. 1845
-
-
Teng, P.1
Nishioka, N.S.2
Anderson, R.R.3
Deutsch, T.F.4
-
19
-
-
21544450220
-
-
note
-
It was suggested in Ref. 1 that stable gas production from laser-heated particles was the origin of the "giant" photoacoustic effect. Stable gas production was observed in our experiments only when extremely high laser fluence was applied. A high fluence laser pulse creates a large cavitation bubble, upon whose collapse a small permanent bubble containing incondensible gas was occasionally observed. Stable gas bubbles were not seen with moderate laser fluences (up to a few times cavitation threshold). Cavitation appears to be a more important source of pressure generation than permanent gas production.
-
-
-
-
24
-
-
0016188564
-
-
W. T. Ham, H. A. Mueller, A. I. Goldman, B. E. Newnam, L. M. Holland, and T. Kuwabara, Science 185, 362 (1974).
-
(1974)
Science
, vol.185
, pp. 362
-
-
Ham, W.T.1
Mueller, H.A.2
Goldman, A.I.3
Newnam, B.E.4
Holland, L.M.5
Kuwabara, T.6
-
25
-
-
0028933432
-
-
C. P. Cain, C. A. Toth, C. D. DiCarlo, C. D. Stein, G. D. Noojin, D. J. Stolarski, and W. P. Roach, Invest. Ophthalmol. Visual Sci. 36, 879 (1995).
-
(1995)
Invest. Ophthalmol. Visual Sci.
, vol.36
, pp. 879
-
-
Cain, C.P.1
Toth, C.A.2
Dicarlo, C.D.3
Stein, C.D.4
Noojin, G.D.5
Stolarski, D.J.6
Roach, W.P.7
-
27
-
-
0026476696
-
-
J. Roider, N. A. Michaud, T. J. Flotte, and R. Birngruber, Arch. Opththalmol. (Chicago) 110, 1786 (1992);
-
(1992)
Arch. Opththalmol. (Chicago)
, vol.110
, pp. 1786
-
-
Roider, J.1
Michaud, N.A.2
Flotte, T.J.3
Birngruber, R.4
-
28
-
-
21544459257
-
-
J. Roider, F. Hillenkamp, T. J. Flotte, and R. Birngruber, Proc. Natl. Acad. Sci. USA 90, 8463 (1993).
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 8463
-
-
Roider, J.1
Hillenkamp, F.2
Flotte, T.J.3
Birngruber, R.4
-
29
-
-
21544435650
-
-
note
-
2 for both 30 ps and 20 ns exposures at the same wavelength.
-
-
-
-
30
-
-
21544478691
-
-
The retinal pigment epithelium contains the highest density of pigment particles in the eye. We have observed cavitation bubble formation inside these cells using the stroboscopic imaging technique, see
-
The retinal pigment epithelium contains the highest density of pigment particles in the eye. We have observed cavitation bubble formation inside these cells using the stroboscopic imaging technique, see M. K. Kelly and C. P. Lin, Proc. SPIE 2975, 27 (1997).
-
(1997)
Proc. SPIE
, vol.2975
, pp. 27
-
-
Kelly, M.K.1
Lin, C.P.2
|