메뉴 건너뛰기




Volumn 1, Issue 1, 1999, Pages 11-13

Comparison of an HXH three-center hydrogen bond with alternative two-center hydrogen bonds in a model system

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0002973705     PISSN: 15237060     EISSN: None     Source Type: Journal    
DOI: 10.1021/ol9900010     Document Type: Article
Times cited : (47)

References (46)
  • 17
    • 0000118937 scopus 로고
    • For opposing views on the significance of bifurcated hydrogen bonding in DNA conformation, see: (a) ref 1i. (b) Fritsch, V.; Westhof, E. J. Am. Chem. Soc. 1991, 113, 8271.
    • (1991) J. Am. Chem. Soc. , vol.113 , pp. 8271
    • Fritsch, V.1    Westhof, E.2
  • 23
    • 0026317429 scopus 로고
    • 3), which suggested that this hydrogen-bonded conformation would not be significantly populated. This prediction is likely to be reliable, since calculations of this type often over-estimate the tendency for intramolecular hydrogen bond formation (Gellman, S. H.; Dado, G. P. Tetrahedron Lett. 1991, 32, 7377). Monte Carlo-stochastic dynamics method: Still, W. C.; Guarnieri, F.J. Comput. Chem. 1994, 15, 1302. AMBER force field: Weiner, S.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230. AMBER* modification: McDonald, D. Q.; Still, W. C. Tetrahedron Lett. 1992, 33, 7747. MacroModel: Mohamdi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440. GB/SA solvation: Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127.
    • (1991) Tetrahedron Lett. , vol.32 , pp. 7377
    • Gellman, S.H.1    Dado, G.P.2
  • 24
    • 84973610749 scopus 로고
    • 3), which suggested that this hydrogen-bonded conformation would not be significantly populated. This prediction is likely to be reliable, since calculations of this type often over-estimate the tendency for intramolecular hydrogen bond formation (Gellman, S. H.; Dado, G. P. Tetrahedron Lett. 1991, 32, 7377). Monte Carlo-stochastic dynamics method: Still, W. C.; Guarnieri, F.J. Comput. Chem. 1994, 15, 1302. AMBER force field: Weiner, S.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230. AMBER* modification: McDonald, D. Q.; Still, W. C. Tetrahedron Lett. 1992, 33, 7747. MacroModel: Mohamdi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440. GB/SA solvation: Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127.
    • (1994) J. Comput. Chem. , vol.15 , pp. 1302
    • Still, W.C.1    Guarnieri, F.2
  • 25
    • 84988053694 scopus 로고
    • 3), which suggested that this hydrogen-bonded conformation would not be significantly populated. This prediction is likely to be reliable, since calculations of this type often over-estimate the tendency for intramolecular hydrogen bond formation (Gellman, S. H.; Dado, G. P. Tetrahedron Lett. 1991, 32, 7377). Monte Carlo-stochastic dynamics method: Still, W. C.; Guarnieri, F.J. Comput. Chem. 1994, 15, 1302. AMBER force field: Weiner, S.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230. AMBER* modification: McDonald, D. Q.; Still, W. C. Tetrahedron Lett. 1992, 33, 7747. MacroModel: Mohamdi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440. GB/SA solvation: Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127.
    • (1986) J. Comput. Chem. , vol.7 , pp. 230
    • Weiner, S.1    Kollman, P.A.2    Nguyen, D.T.3    Case, D.A.4
  • 26
    • 0026620937 scopus 로고
    • 3), which suggested that this hydrogen-bonded conformation would not be significantly populated. This prediction is likely to be reliable, since calculations of this type often over-estimate the tendency for intramolecular hydrogen bond formation (Gellman, S. H.; Dado, G. P. Tetrahedron Lett. 1991, 32, 7377). Monte Carlo-stochastic dynamics method: Still, W. C.; Guarnieri, F.J. Comput. Chem. 1994, 15, 1302. AMBER force field: Weiner, S.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230. AMBER* modification: McDonald, D. Q.; Still, W. C. Tetrahedron Lett. 1992, 33, 7747. MacroModel: Mohamdi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440. GB/SA solvation: Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127.
    • (1992) Tetrahedron Lett. , vol.33 , pp. 7747
    • McDonald, D.Q.1    Still, W.C.2
  • 27
    • 84986437005 scopus 로고
    • 3), which suggested that this hydrogen-bonded conformation would not be significantly populated. This prediction is likely to be reliable, since calculations of this type often over-estimate the tendency for intramolecular hydrogen bond formation (Gellman, S. H.; Dado, G. P. Tetrahedron Lett. 1991, 32, 7377). Monte Carlo-stochastic dynamics method: Still, W. C.; Guarnieri, F.J. Comput. Chem. 1994, 15, 1302. AMBER force field: Weiner, S.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230. AMBER* modification: McDonald, D. Q.; Still, W. C. Tetrahedron Lett. 1992, 33, 7747. MacroModel: Mohamdi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440. GB/SA solvation: Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127.
    • (1990) J. Comput. Chem. , vol.11 , pp. 440
    • Mohamdi, F.1    Richards, N.G.J.2    Guida, W.C.3    Liskamp, R.4    Lipton, M.5    Caufield, C.6    Chang, G.7    Hendrickson, T.8    Still, W.C.9
  • 28
    • 0344778061 scopus 로고
    • 3), which suggested that this hydrogen-bonded conformation would not be significantly populated. This prediction is likely to be reliable, since calculations of this type often over-estimate the tendency for intramolecular hydrogen bond formation (Gellman, S. H.; Dado, G. P. Tetrahedron Lett. 1991, 32, 7377). Monte Carlo-stochastic dynamics method: Still, W. C.; Guarnieri, F.J. Comput. Chem. 1994, 15, 1302. AMBER force field: Weiner, S.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230. AMBER* modification: McDonald, D. Q.; Still, W. C. Tetrahedron Lett. 1992, 33, 7747. MacroModel: Mohamdi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440. GB/SA solvation: Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127.
    • (1990) J. Am. Chem. Soc. , vol.112 , pp. 6127
    • Still, W.C.1    Tempczyk, A.2    Hawley, R.C.3    Hendrickson, T.4
  • 38
    • 0000058899 scopus 로고
    • Freeman: San Francisco
    • The extent to which a hydrogen-bonded N-H stretch band is shifted from its non-hydrogen-bonded position should be directly related to the strength of the hydrogen bond: Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; Freeman: San Francisco, 1960. However, positions observed for amide N-H stretch bands may be influenced by Fermi resonance: Miyazawa, T. J. Mol. Spectroscopy 1960, 4, 168.
    • (1960) The Hydrogen Bond
    • Pimentel, G.C.1    McClellan, A.L.2
  • 39
    • 0000058899 scopus 로고
    • The extent to which a hydrogen-bonded N-H stretch band is shifted from its non-hydrogen-bonded position should be directly related to the strength of the hydrogen bond: Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; Freeman: San Francisco, 1960. However, positions observed for amide N-H stretch bands may be influenced by Fermi resonance: Miyazawa, T. J. Mol. Spectroscopy 1960, 4, 168.
    • (1960) J. Mol. Spectroscopy , vol.4 , pp. 168
    • Miyazawa, T.1
  • 40
    • 0043114417 scopus 로고    scopus 로고
    • note
    • The IR-derived thermodynamic parameters derived for 1 are reproducible to within 10% in parallel independent determinations. Systematic error in these values, however, is difficult to evaluate. We have previously shown that IR-derived and NMR-derived enthalpy values agree well in related systems, but that agreement can be poorer for entropy values (refs 6a and 6b).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.