-
1
-
-
84886804152
-
Evaluation of a new method to compute signs of determinants
-
+1]
-
+1] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Evaluation of a new method to compute signs of determinants. In Proc. 11th Ann. ACM Symp. Comput. Geom., pages C16-C17, 1995.
-
(1995)
Proc. 11th Ann. ACM Symp. Comput. Geom.
-
-
Avnaim, F.1
Boissonnat, J.-D.2
Devillers, O.3
Preparata, F.4
Yvinec, M.5
-
2
-
-
0346506900
-
Evaluating signs of determinants using single-precision arithmetic
-
+2]
-
+2] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Evaluating signs of determinants using single-precision arithmetic. Algorithmica, 17:111-132, 1997.
-
(1997)
Algorithmica
, vol.17
, pp. 111-132
-
-
Avnaim, F.1
Boissonnat, J.-D.2
Devillers, O.3
Preparata, F.4
Yvinec, M.5
-
4
-
-
0030645960
-
Computing exact geometric predicates using modular arithmetic with single precision
-
[BEPP]
-
[BEPP] H. Brönnimann, I. Emiris, V. Pan, and S. Pion. Computing exact geometric predicates using modular arithmetic with single precision. In Proc. 13th Ann. ACM Symp. Comput. Geom., pages 174-182, 1997.
-
(1997)
Proc. 13th Ann. ACM Symp. Comput. Geom.
, pp. 174-182
-
-
Brönnimann, H.1
Emiris, I.2
Pan, V.3
Pion, S.4
-
5
-
-
0040508062
-
Exact geometric computation in LEDA
-
+]
-
+] C. Burnikel, J. Könnemann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Exact geometric computation in LEDA. In Proc. 11th Ann. ACM Symp. Comput. Geom., pages C18-C19, 1995.
-
(1995)
Proc. 11th Ann. ACM Symp. Comput. Geom.
-
-
Burnikel, C.1
Könnemann, J.2
Mehlhorn, K.3
Näher, S.4
Schirra, S.5
Uhrig, C.6
-
6
-
-
0012458931
-
Application challenges to computational geometry: CG impact task force report
-
+] Princeton University, April
-
+] B. Chazelle et al. Application challenges to computational geometry: CG impact task force report. Technical Report TR-521-96, Princeton University, April 1996.
-
(1996)
Technical Report TR-521-96
-
-
Chazelle, B.1
-
8
-
-
0346826081
-
A probabilistic analysis of the power of arithmetic filters
-
[DP] INRIA, Also report CS96-27 Brown University
-
[DP] O. Devillers and F. Preparata. A probabilistic analysis of the power of arithmetic filters. Rapport de recherche 2971, INRIA, 1996. Also report CS96-27 Brown University.
-
(1996)
Rapport de Recherche 2971
-
-
Devillers, O.1
Preparata, F.2
-
10
-
-
0012154090
-
Numerical stability of algorithms for 2-d Delaunay triangulations
-
[F]
-
[F] S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations. Internat. J. Comput. Geom. Appl., 5(1):193-213, 1995.
-
(1995)
Internat. J. Comput. Geom. Appl.
, vol.5
, Issue.1
, pp. 193-213
-
-
Fortune, S.1
-
12
-
-
0026122066
-
What every computer scientist should know about floating-point arithmetic
-
[G] March
-
[G] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv., 23(1):5-8, March 1991.
-
(1991)
ACM Comput. Surv.
, vol.23
, Issue.1
, pp. 5-8
-
-
Goldberg, D.1
-
15
-
-
0025191490
-
Efficient Delaunay triangulations using rational arithmetic
-
[KLM]
-
[KLM] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulations using rational arithmetic. ACM Trans. Graphics, 10:71-91, 1991.
-
(1991)
ACM Trans. Graphics
, vol.10
, pp. 71-91
-
-
Karasick, M.1
Lieber, D.2
Nackman, L.R.3
-
16
-
-
0024983394
-
Constructing strongly convex hulls using exact or rounded arithmetic
-
[LM]
-
[LM] Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or rounded arithmetic. In Proc. 6th Ann. ACM Symp. Comput. Geom., pages 235-243, 1990.
-
(1990)
Proc. 6th Ann. ACM Symp. Comput. Geom.
, pp. 235-243
-
-
Li, Z.1
Milenkovic, V.2
-
17
-
-
0024765832
-
Double precision geometry: A general technique for calculating line and segment intersections using rounded arithmetic
-
[M]
-
[M] V. Milenkovic. Double precision geometry: a general technique for calculating line and segment intersections using rounded arithmetic. In Proc. 30th Ann. IEEE Symp. Found. Comput. Sci., pages 500-505, 1989.
-
(1989)
Proc. 30th Ann. IEEE Symp. Found. Comput. Sci.
, pp. 500-505
-
-
Milenkovic, V.1
-
18
-
-
0029709490
-
Robust adaptive floating-point geometric predicates
-
[S]
-
[S] Jonathan R. Shewchuk. Robust adaptive floating-point geometric predicates. In Proc. 12th Ann. ACM Symp. Comput. Geom., pages 141-150, 1996.
-
(1996)
Proc. 12th Ann. ACM Symp. Comput. Geom.
, pp. 141-150
-
-
Shewchuk, J.R.1
-
19
-
-
0024946856
-
A solid modelling system free from topological inconsistency
-
[SI1]
-
[SI1] K. Sugihara and M. Iri. A solid modelling system free from topological inconsistency. J. Inform. Process, 12(4):380-393, 1989.
-
(1989)
J. Inform. Process
, vol.12
, Issue.4
, pp. 380-393
-
-
Sugihara, K.1
Iri, M.2
-
20
-
-
0000916188
-
A robust topology-oriented incremental algorithm for Voronoi diagrams
-
[SI2]
-
[SI2] K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm for Voronoi diagrams. Internat. J. Comput. Geom. Appl., 4:179-228, 1994.
-
(1994)
Internat. J. Comput. Geom. Appl.
, vol.4
, pp. 179-228
-
-
Sugihara, K.1
Iri, M.2
-
21
-
-
0011363046
-
Towards exact geometric computation
-
[Y]
-
[Y] C. K. Yap. Towards exact geometric computation. In Proc. 5th Canad. Conf. Comput. Geom., pages 405-419, 1993.
-
(1993)
Proc. 5th Canad. Conf. Comput. Geom.
, pp. 405-419
-
-
Yap, C.K.1
-
22
-
-
0001119219
-
The exact computation paradigm
-
[YD] D.-Z. Du and F. K. Hwang, editors, Volume 1 of Lecture Notes on Computing. World Scientific, Singapore
-
[YD] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geometry, 2nd edition, pages 452-492. Volume 1 of Lecture Notes on Computing. World Scientific, Singapore, 1995.
-
(1995)
Computing in Euclidean Geometry, 2nd Edition
, pp. 452-492
-
-
Yap, C.K.1
Dubé, T.2
|