-
1
-
-
0346569140
-
A lazy solution to imprecision in computational geometry
-
Waterloo
-
M. Benouamer, P. Jaillon, D. Michelucci, and J.-M. Moreau. A lazy solution to imprecision in computational geometry. Proc. 5th Canad. Conf. Comput. Geom., pp. 73-78, Waterloo, 1993.
-
(1993)
Proc. 5th Canad. Conf. Comput. Geom.
, pp. 73-78
-
-
Benouamer, M.1
Jaillon, P.2
Michelucci, D.3
Moreau, J.-M.4
-
4
-
-
0024765831
-
Stable maintenance of point set triangulations in two dimensions
-
S. Fortune. Stable maintenance of point set triangulations in two dimensions. Proc. 30th Annual IEEE Symp. Found. Comput. Sci., pp. 494-505, 1989.
-
(1989)
Proc. 30th Annual IEEE Symp. Found. Comput. Sci.
, pp. 494-505
-
-
Fortune, S.1
-
5
-
-
0038809776
-
Numerical stability of algorithms for 2-d Delaunay triangulations and Voronoi diagrams
-
S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations and Voronoi diagrams. Proc. 8th Annual ACM Symp. Comput Geom., pp. 83-92, 1992.
-
(1992)
Proc. 8th Annual ACM Symp. Comput Geom.
, pp. 83-92
-
-
Fortune, S.1
-
10
-
-
0024770161
-
Robust set operations on polyhedral solids
-
November
-
C. M. Hoffmann, J. E. Hopcroft, and M. T. Karasick. Robust set operations on polyhedral solids. IEEE Comput. Graph. Appl., 9(6):50-59, November 1989.
-
(1989)
IEEE Comput. Graph. Appl.
, vol.9
, Issue.6
, pp. 50-59
-
-
Hoffmann, C.M.1
Hopcroft, J.E.2
Karasick, M.T.3
-
11
-
-
0025191490
-
Efficient Delaunay triangulations using rational arithmetic
-
M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulations using rational arithmetic. ACM Trans. Graph., 10:71-91, 1991.
-
(1991)
ACM Trans. Graph.
, vol.10
, pp. 71-91
-
-
Karasick, M.1
Lieber, D.2
Nackman, L.R.3
-
13
-
-
0024122109
-
Verifiable implementations of geometric algorithms using finite precision arithmetic
-
V. Milenkovic. Verifiable implementations of geometric algorithms using finite precision arithmetic. Artificial Intelligence, 37:377-401, 1988.
-
(1988)
Artificial Intelligence
, vol.37
, pp. 377-401
-
-
Milenkovic, V.1
-
14
-
-
0024765832
-
Double precision geometry: A general technique for calculating line and segment intersections using rounded arithmetic
-
V. Milenkovic. Double precision geometry: a general technique for calculating line and segment intersections using rounded arithmetic. Proc. 30th Annual IEEE Symp. Found. Comput. Sci., pp 500-505, 1989.
-
(1989)
Proc. 30th Annual IEEE Symp. Found. Comput. Sci.
, pp. 500-505
-
-
Milenkovic, V.1
-
15
-
-
0005000036
-
-
Report A 04/89, Fachber. Inform., Univ. Saarlandes, Saarbrücken
-
K. Mehlhorn and S. Näher. LEDA, a library of efficient data types and algorithms. Report A 04/89, Fachber. Inform., Univ. Saarlandes, Saarbrücken, 1989.
-
(1989)
LEDA, a Library of Efficient Data Types and Algorithms
-
-
Mehlhorn, K.1
Näher, S.2
-
16
-
-
0345937907
-
Geometric algorithms in finite-precision arithmetic
-
Math. Eng. and Physics Dept., Univ. of Tokyo, September
-
K. Sugihara and M. Iri. Geometric algorithms in finite-precision arithmetic. Technical Report 88-10, Math. Eng. and Physics Dept., Univ. of Tokyo, September 1988.
-
(1988)
Technical Report 88-10
-
-
Sugihara, K.1
Iri, M.2
|