-
5
-
-
0004326059
-
-
Oxford University Press, Oxford
-
R. A. Young, Editor, The Rietveld Method (Oxford University Press, Oxford, 1993).
-
(1993)
The Rietveld Method
-
-
Young, R.A.1
-
12
-
-
0023383687
-
-
M. Barral, J. L. Lebrun, J. M. Sprauel, and G. Maeder, Metall. Trans. A 18, 1229 (1987).
-
(1987)
Metall. Trans. A
, vol.18
, pp. 1229
-
-
Barral, M.1
Lebrun, J.L.2
Sprauel, J.M.3
Maeder, G.4
-
13
-
-
85034476258
-
-
note
-
3.
-
-
-
-
15
-
-
85034462342
-
-
note
-
If texture exists, the measured interplanar spacing is weighted by the ODF and the general texture effects have to be considered carefully. Because the integration in Eq. (11) is around the normal to the diffracting plane, for crystal symmetries where elastic properties are isotropic in that plane (such as {111} cubic and {001} hexagonal), it is expected that texture has no effect if the sample symmetry axis coincides with that direction. This may explain why the 〈hhh〉 strains of cubic materials do not show texture effects (Ref. 12). In the example given later in this study, Al matrix possesses a strong cylindrically symmetrical [111] texture and SiC hexagonal whiskers a strong [001] cylindrically symmetrical texture (compare to Fig. 5). Thus, the averaging over different {hkl} in Rietveld refinement will effectively favor these preferred orientations for each phase and texture effects on measured average strains will be negligible.
-
-
-
-
18
-
-
0042356214
-
-
T. Imura, S. Weissmann, and J. J. Slade, Jr., Acta Crystallogr. 15, 786 (1962).
-
(1962)
Acta Crystallogr.
, vol.15
, pp. 786
-
-
Imura, T.1
Weissmann, S.2
Slade Jr., J.J.3
-
20
-
-
0000310932
-
-
23) is nonzero, the measured strain at a particular φ will be different at ψ and -ψ according to Eq. (21). See in H. Dölle and V. Hauk, Z. Metallkd. 68, 728 (1977).
-
(1977)
Z. Metallkd.
, vol.68
, pp. 728
-
-
Dölle, H.1
Hauk, V.2
-
22
-
-
0343437330
-
-
Minerals, Metals & Materials Society, Warrendale, PA
-
R. J. Arsenault and A. D. Krawitz, Residual Stresses in Composites; Measurement, Modeling & Effects on Thermo-Mechanical Behavior (Minerals, Metals & Materials Society, Warrendale, PA, 1993), pp. 115-130.
-
(1993)
Residual Stresses in Composites; Measurement, Modeling & Effects on Thermo-Mechanical Behavior
, pp. 115-130
-
-
Arsenault, R.J.1
Krawitz, A.D.2
-
23
-
-
0000778269
-
-
G. L. Povirk, M. G. Stout, M. Bourke, J. A. Goldstone, A. C. Lawson, M. Lovato, S. R. Macewen, S. R. Nutt, and A. Needleman, Acta Metall. Mater. 40, 2391 (1992).
-
(1992)
Acta Metall. Mater.
, vol.40
, pp. 2391
-
-
Povirk, G.L.1
Stout, M.G.2
Bourke, M.3
Goldstone, J.A.4
Lawson, A.C.5
Lovato, M.6
Macewen, S.R.7
Nutt, S.R.8
Needleman, A.9
-
24
-
-
0000785595
-
-
J. D. Jorgensen, J. Faber, Jr., J. M. Carpenter, R. K. Crawford, J. R. Haumann, R. L. Hitterman, R. Kleb, G. E. Ostrowski, F. J. Rotella, and T. G. Worlton, J. Appl. Crystallogr. 22, 321 (1989).
-
(1989)
J. Appl. Crystallogr.
, vol.22
, pp. 321
-
-
Jorgensen, J.D.1
Faber Jr., J.2
Carpenter, J.M.3
Crawford, R.K.4
Haumann, J.R.5
Hitterman, R.L.6
Kleb, R.7
Ostrowski, G.E.8
Rotella, F.J.9
Worlton, T.G.10
-
25
-
-
85034478437
-
-
note
-
The common terms are x-ray compliances and x-ray elastic constants, but they also are evidently valid for neutron diffraction.
-
-
-
-
30
-
-
13544254011
-
-
E. Kröner, Z. Phys. 151, 504 (1958).
-
(1958)
Z. Phys.
, vol.151
, pp. 504
-
-
Kröner, E.1
-
33
-
-
0002118122
-
-
S. Majumdar, J. P. Singh, D. Kupperman, and A. D. Krawitz, J. Eng. Mater. Technol. 113, 51 (1991).
-
(1991)
J. Eng. Mater. Technol.
, vol.113
, pp. 51
-
-
Majumdar, S.1
Singh, J.P.2
Kupperman, D.3
Krawitz, A.D.4
-
34
-
-
0000173615
-
-
M. R. Daymond, M. A. M. Bourke, R. B. Von Dreele, B. Clausen, and T. Lorentzen, J. Appl. Phys. 82, 1554 (1997).
-
(1997)
J. Appl. Phys.
, vol.82
, pp. 1554
-
-
Daymond, M.R.1
Bourke, M.A.M.2
Von Dreele, R.B.3
Clausen, B.4
Lorentzen, T.5
-
36
-
-
0020750117
-
-
S. R. MacEwen, J. Faber, Jr., and A. P. L. Turner, Acta Metall. 31, 657 (1983).
-
(1983)
Acta Metall.
, vol.31
, pp. 657
-
-
MacEwen, S.R.1
Faber Jr., J.2
Turner, A.P.L.3
-
37
-
-
85034475678
-
-
note
-
This is for a sufficiently small specimen, so that the absorption can be neglected. Evidently, the origin of diffraction-line shifts will depend on the relative size of a specimen and the beam. If a specimen is completely bathed in the beam at any orientation, macrostrain should balance to zero, but there will be a more pronounced systematic error in strains because of specimen shifts. Conversely, macrostrain will be measurable, as shown earlier in the article.
-
-
-
-
38
-
-
0003472812
-
-
Addison-Wesley, Reading, MA
-
B. E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969), pp. 251-314.
-
(1969)
X-Ray Diffraction
, pp. 251-314
-
-
Warren, B.E.1
-
39
-
-
0005835838
-
-
R. I. Todd, C. Borsa, B. Derby, and M. A. M. Bourke, Nucl. Instrum. Methods Phys. Res. A 354, 139 (1995).
-
(1995)
Nucl. Instrum. Methods Phys. Res. A
, vol.354
, pp. 139
-
-
Todd, R.I.1
Borsa, C.2
Derby, B.3
Bourke, M.A.M.4
-
40
-
-
0029389887
-
-
C. M. Weisbrook, V. S. Gopalaratnam, and A. D. Krawitz, Mater. Sci. Eng., A 201, 134 (1995).
-
(1995)
Mater. Sci. Eng., A
, vol.201
, pp. 134
-
-
Weisbrook, C.M.1
Gopalaratnam, V.S.2
Krawitz, A.D.3
-
41
-
-
0026105233
-
-
J. S. Kallend, U. F. Kocks, A. D. Rollet, and H.-R. Wenk, Mater. Sci. Eng., A 132, 1 (1991).
-
(1991)
Mater. Sci. Eng., A
, vol.132
, pp. 1
-
-
Kallend, J.S.1
Kocks, U.F.2
Rollet, A.D.3
Wenk, H.-R.4
|