-
1
-
-
85037903037
-
-
P. Rudolf in Fullerenes and Fullerene Nanostructures, edited by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (World Scientific, New Jersey, 1996).
-
P. Rudolf in Fullerenes and Fullerene Nanostructures, edited by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (World Scientific, New Jersey, 1996).
-
-
-
-
2
-
-
0000372211
-
-
F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I. M. L. Billas, and T. P. Martin, Z. Phys. D 40, 351 (1997);
-
(1997)
Z. Phys. D
, vol.40
, pp. 351
-
-
Tast, F.1
Malinowski, N.2
Frank, S.3
Heinebrodt, M.4
Billas, I.M.L.5
Martin, T.P.6
-
3
-
-
0029225044
-
-
U. Zimmermann, N. Malinowski, A. Burkhardt, and T. P. Martin, Carbon 33, 995 (1995).
-
(1995)
Carbon
, vol.33
, pp. 995
-
-
Zimmermann, U.1
Malinowski, N.2
Burkhardt, A.3
Martin, T.P.4
-
5
-
-
0001449316
-
-
T. R. Ohno, Y. Chen, S. E. Harvey, G. H. Kroll, P. J. Benning, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley, Phys. Rev. B 47, 2389 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 2389
-
-
Ohno, T.R.1
Chen, Y.2
Harvey, S.E.3
Kroll, G.H.4
Benning, P.J.5
Weaver, J.H.6
Chibante, L.P.F.7
Smalley, R.E.8
-
6
-
-
0000392696
-
-
M. Stetzer, P. Heiney, J. Fischer, and A. McGhie, Phys. Rev. B 55, 127 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 127
-
-
Stetzer, M.1
Heiney, P.2
Fischer, J.3
McGhie, A.4
-
7
-
-
0001368007
-
-
M. Foltin, M. Lezius, P. Scheier, and T. D. Märk, J. Chem. Phys. 98, 9624 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 9624
-
-
Foltin, M.1
Lezius, M.2
Scheier, P.3
Märk, T.D.4
-
9
-
-
0000514021
-
-
E. E. B. Campbell, G. Ulmer, H. G. Bussmann, and I. V. Hertel, Chem. Phys. Lett. 175, 505 (1990).
-
(1990)
Chem. Phys. Lett.
, vol.175
, pp. 505
-
-
Campbell, E.E.B.1
Ulmer, G.2
Bussmann, H.G.3
Hertel, I.V.4
-
12
-
-
0030259009
-
-
F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I. M. L. Billas, and T. P. Martin, Phys. Rev. Lett. 77, 3529 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3529
-
-
Tast, F.1
Malinowski, N.2
Frank, S.3
Heinebrodt, M.4
Billas, I.M.L.5
Martin, T.P.6
-
13
-
-
0042963452
-
-
W. Branz, I. M. L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, and T. P. Martin, J. Chem. Phys. 109, 3425 (1998).
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 3425
-
-
Branz, W.1
Billas, I.M.L.2
Malinowski, N.3
Tast, F.4
Heinebrodt, M.5
Martin, T.P.6
-
15
-
-
0000126691
-
-
A. J. Maxwell, P. A. Brühwiler, S. Andersson, N. Mårtensson, and P. Rudolf, Chem. Phys. Lett. 247, 257 (1995).
-
(1995)
Chem. Phys. Lett.
, vol.247
, pp. 257
-
-
Maxwell, A.J.1
Brühwiler, P.A.2
Andersson, S.3
Mårtensson, N.4
Rudolf, P.5
-
16
-
-
0000221078
-
-
A. Nakajima, S. Nagao, H. Takeda, T. Kurikawa, and K. Kaya, J. Chem. Phys. 107, 6491 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 6491
-
-
Nakajima, A.1
Nagao, S.2
Takeda, H.3
Kurikawa, T.4
Kaya, K.5
-
17
-
-
0000463187
-
-
S. Nagao, T. Kurikawa, K. Miyajima, A. Nakajima, and K. Kaya, J. Phys. Chem. 102, 4495 (1998).
-
(1998)
J. Phys. Chem.
, vol.102
, pp. 4495
-
-
Nagao, S.1
Kurikawa, T.2
Miyajima, K.3
Nakajima, A.4
Kaya, K.5
-
18
-
-
0000637515
-
-
T. Kurikawa, S. Nagao, K. Miyajima, A. Nakajima, and K. Kaya, J. Phys. Chem. 102, 1743 (1998).
-
(1998)
J. Phys. Chem.
, vol.102
, pp. 1743
-
-
Kurikawa, T.1
Nagao, S.2
Miyajima, K.3
Nakajima, A.4
Kaya, K.5
-
19
-
-
0031554828
-
-
Ch. Kusch, B. Winter, R. Mitzner, A. Gomes Silva, E. E. B. Campbell, and I. V. Hertel, Chem. Phys. Lett. 275, 469 (1997).
-
(1997)
Chem. Phys. Lett.
, vol.275
, pp. 469
-
-
Winter, B.1
Mitzner, R.2
Gomes Silva, A.3
Campbell, E.E.B.4
Hertel, I.V.5
-
20
-
-
0011079223
-
-
S. C. Richtsmeier, E. K. Parks, K. Liu, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 3659 (1985).
-
(1985)
J. Chem. Phys.
, vol.82
, pp. 3659
-
-
Richtsmeier, S.C.1
Parks, E.K.2
Liu, K.3
Pobo, L.G.4
Riley, S.J.5
-
21
-
-
0006819541
-
-
P. S. Bechthold, E. K. Parks, B. H. Weiller, L. G. Pobo, and S. J. Riley, Z. Phys. Chem., Neue Folge 169, 101 (1990).
-
(1990)
Z. Phys. Chem., Neue Folge
, vol.169
, pp. 101
-
-
Bechthold, P.S.1
Parks, E.K.2
Weiller, B.H.3
Pobo, L.G.4
Riley, S.J.5
-
22
-
-
85037921808
-
-
As an example, with the FTR at 1073 K, a (Formula presented) cluster emerges from the nozzle expansion with roughly 70 eV of translational energy along the cluster beam axis. This energy was determined by modeling the mass spectrometer with the program MACSIMION and determining the energy from the experimentally determined deflection plate voltage settings for (Formula presented)
-
As an example, with the FTR at 1073 K, a (Formula presented) cluster emerges from the nozzle expansion with roughly 70 eV of translational energy along the cluster beam axis. This energy was determined by modeling the mass spectrometer with the program MACSIMION and determining the energy from the experimentally determined deflection plate voltage settings for (Formula presented)
-
-
-
-
23
-
-
0000495513
-
-
E. K. Parks, L. Zhu, J. Ho, and S. J. Riley, J. Chem. Phys. 100, 7206 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 7206
-
-
Parks, E.K.1
Zhu, L.2
Ho, J.3
Riley, S.J.4
-
24
-
-
85037892995
-
-
Cluster cooling in the nozzle expansion prevents (Formula presented) desorption between the nozzle and the time-of-flight mass spectrometer.
-
Cluster cooling in the nozzle expansion prevents (Formula presented) desorption between the nozzle and the time-of-flight mass spectrometer.
-
-
-
-
25
-
-
0031559544
-
-
E. K. Parks, G. C. Nieman, K. P. Kerns, and S. J. Riley, J. Chem. Phys. 107, 1861 (1997).
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 1861
-
-
Parks, E.K.1
Nieman, G.C.2
Kerns, K.P.3
Riley, S.J.4
-
26
-
-
0001636798
-
-
The value of 18 mTorr is best considered an upper limit. The average He flow velocity in the FTR was used in determining the (Formula presented) pressure. Since the (Formula presented) distribution across the diameter of the FTR is to some extent concentrated in the center (where the He flow velocity is twice the average), the (Formula presented) flow velocity is somewhere between the average He flow velocity and twice that velocity. As a result, the (Formula presented) pressure is likely somewhat lower than 18 mTorr but certainly greater than 10 mTorr. At the cup temperature that produces the nominal (Formula presented) vapor pressure, the static vapor pressure above solid (Formula presented) is ∼1.1 Torr [extrapolated from the data of J. Abrefah, D. R. Olander, M. Balooch, and W. J. Siekhaus, Appl. Phys. Lett. 60, 1313 (1992)]. The nominal vapor pressure in the FTR is lower due to the low rate of diffusion of (Formula presented) out of the cup into the helium carrier gas. To monitor the (Formula presented) pressure in the present experiments, the (Formula presented) ion signal in the mass spectrum was followed over the lifetime of the sample in the cup.
-
(1992)
Appl. Phys. Lett.
, vol.60
, pp. 1313
-
-
Abrefah, J.1
Olander, D.R.2
Balooch, M.3
Siekhaus, W.J.4
-
27
-
-
85037888926
-
-
Clusters with the same mass but different numbers of adsorbed (Formula presented) molecules acquire different energies in the nozzle expansion, which results in slightly different trajectories through the mass spectrometer and thus slightly different flight times.
-
Clusters with the same mass but different numbers of adsorbed (Formula presented) molecules acquire different energies in the nozzle expansion, which results in slightly different trajectories through the mass spectrometer and thus slightly different flight times.
-
-
-
-
29
-
-
85037892486
-
-
MER stands for Materials & Electrochemical Research Corporation (Tucson, AZ).
-
MER stands for Materials & Electrochemical Research Corporation (Tucson, AZ).
-
-
-
-
30
-
-
85037888468
-
-
Frankfurt, Germany.
-
Frankfurt, Germany.
-
-
-
-
31
-
-
85037909993
-
-
This peak is actually two peaks separated by 8 amu.
-
This peak is actually two peaks separated by 8 amu.
-
-
-
-
34
-
-
85037923385
-
-
(Formula presented) was also observed, but is thought to arise mainly from fragmentation processes.
-
(Formula presented) was also observed, but is thought to arise mainly from fragmentation processes.
-
-
-
-
35
-
-
85037887673
-
-
While (Formula presented) and (Formula presented) are also observed, they are thought to arise, at least in part, from fragmentation processes.
-
While (Formula presented) and (Formula presented) are also observed, they are thought to arise, at least in part, from fragmentation processes.
-
-
-
-
36
-
-
85037914518
-
-
In a process dominated by adsorption kinetics (i.e., no desorption of the adsorbed molecules), as saturation at (Formula presented) is approached the accumulation of the (Formula presented) product species can cause a bimodal distribution to form of the (Formula presented) species; i.e., the intensity of the (Formula presented) species can become smaller than that of the (Formula presented) and p species. This cannot occur under equilibrium conditions as long as the adsorption bond strength decreases continuously with increasing coverage.
-
In a process dominated by adsorption kinetics (i.e., no desorption of the adsorbed molecules), as saturation at (Formula presented) is approached the accumulation of the (Formula presented) product species can cause a bimodal distribution to form of the (Formula presented) species; i.e., the intensity of the (Formula presented) species can become smaller than that of the (Formula presented) and p species. This cannot occur under equilibrium conditions as long as the adsorption bond strength decreases continuously with increasing coverage.
-
-
-
-
37
-
-
85037915820
-
-
Unpublished results from this laboratory.
-
Unpublished results from this laboratory.
-
-
-
-
38
-
-
0000160474
-
-
P. J. Benning, D. M. Poirier, T. R. Chen, M. B. Jost, F. Stepniak, G. H. Kroll, J. H. Weaver, J. Fure, and R. E. Smalley, Phys. Rev. B 45, 6899 (1992).
-
(1992)
Phys. Rev. B
, vol.45
, pp. 6899
-
-
Benning, P.J.1
Poirier, D.M.2
Chen, T.R.3
Jost, M.B.4
Stepniak, F.5
Kroll, G.H.6
Weaver, J.H.7
Fure, J.8
Smalley, R.E.9
-
39
-
-
33748458912
-
-
H.-B. Bürgi, R. Restori, and D. Schwarzenbach, Acta Crystallogr., Sect. B: Struct. Sci. B49, 832 (1993).
-
(1993)
Acta Crystallogr., Sect. B: Struct. Sci.
, vol.B49
, pp. 832
-
-
Restori, R.1
Schwarzenbach, D.2
-
40
-
-
85037883088
-
-
In the structureless packing model one equates the volume of the cluster to the number of atoms in the cluster times the atomic volume using the bulk density.
-
In the structureless packing model one equates the volume of the cluster to the number of atoms in the cluster times the atomic volume using the bulk density.
-
-
-
-
41
-
-
84917921465
-
-
J. Bohr, D. Gibbs, S. K. Sinha, W. Krätschmer, G. van Tendeloo, E. Larson, H. Egsgaard, and L. E. Berman, Europhys. Lett. 17, 327 (1992).
-
(1992)
Europhys. Lett.
, vol.17
, pp. 327
-
-
Bohr, J.1
Gibbs, D.2
Sinha, S.K.3
Krätschmer, W.4
van Tendeloo, G.5
Larson, E.6
Egsgaard, H.7
Berman, L.E.8
-
42
-
-
85037891355
-
-
A preexponential factor of (Formula presented) monolayers/s has been obtained for zero-order desorption of (Formula presented) multilayers;
-
A preexponential factor of (Formula presented) monolayers/s has been obtained for zero-order desorption of (Formula presented) multilayers;
-
-
-
-
44
-
-
0001012586
-
-
T. Quest, R. Bellmann, B. Winter, J. Gatzke, and I. V. Hertel, J. Appl. Phys. 83, 1642 (1998).
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 1642
-
-
Quest, T.1
Bellmann, R.2
Winter, B.3
Gatzke, J.4
Hertel, I.V.5
-
45
-
-
0000050302
-
-
M. R. C. Hunt, S. Modesti, P. Rudolf, and R. E. Palmer, Phys. Rev. B 51, 10 039 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 10 039
-
-
Hunt, M.R.C.1
Modesti, S.2
Rudolf, P.3
Palmer, R.E.4
-
46
-
-
0942288113
-
-
E. K. Parks, G. C. Nieman, K. P. Kerns, and S. J. Riley, J. Chem. Phys. 108, 3731 (1998).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 3731
-
-
Parks, E.K.1
Nieman, G.C.2
Kerns, K.P.3
Riley, S.J.4
-
48
-
-
0001264633
-
-
E. K. Parks, L. Zhu, J. Ho, and S. J. Riley, J. Chem. Phys. 102, 7377 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 7377
-
-
Parks, E.K.1
Zhu, L.2
Ho, J.3
Riley, S.J.4
-
49
-
-
36449001894
-
-
E. K. Parks, B. J. Winter, T. D. Klots, and S. J. Riley, J. Chem. Phys. 94, 1882 (1991).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 1882
-
-
Parks, E.K.1
Winter, B.J.2
Klots, T.D.3
Riley, S.J.4
-
50
-
-
0000140776
-
-
R. Fasel, P. Aebi, R. G. Agostino, D. Naumovié, J. Osterwalder, A. Santaniello, and L. Schlapbach, Phys. Rev. Lett. 76, 4733 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 4733
-
-
Fasel, R.1
Aebi, P.2
Agostino, R.G.3
Naumovié, D.4
Osterwalder, J.5
Santaniello, A.6
Schlapbach, L.7
-
57
-
-
0000126691
-
-
A. J. Maxwell, P. A. Brühwiler, S. Andersson, N. Mårtensson, and P. Rudolf, Chem. Phys. Lett. 247, 257 (1995).
-
(1995)
Chem. Phys. Lett.
, vol.247
, pp. 257
-
-
Maxwell, A.J.1
Brühwiler, P.A.2
Andersson, S.3
Mårtensson, N.4
Rudolf, P.5
-
58
-
-
0001267465
-
-
These effects have been observed for adsorption of hydrogen and carbon monoxide on nickel clusters. The opposite result of increased ionization efficiency and decreased IP resulting from electron donation to the metal from the ligand have been observed for ammonia adsorption [see E. K. Parks, T. D. Klots, and S. J. Riley, J. Chem. Phys. 92, 3813 (1990);
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 3813
-
-
Parks, E.K.1
Klots, T.D.2
Riley, S.J.3
-
59
-
-
36449005777
-
-
J. Chem. Phys.M. Knickelbein and W. J. C. Menezes, 94, 4111 (1991)]. Nitrogen adsorption, which transfers little charge in either direction, has little effect on the ionization efficiency or IP.
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 4111
-
-
Knickelbein, M.1
Menezes, W.J.C.2
-
61
-
-
36449002085
-
-
J. C. Pinegar, J. D. Langenberg, C. A. Arrington, E. M. Spain, and M. D. Morse, J. Chem. Phys. 102, 666 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 666
-
-
Pinegar, J.C.1
Langenberg, J.D.2
Arrington, C.A.3
Spain, E.M.4
Morse, M.D.5
-
64
-
-
0000448236
-
-
E. Curotto, A. Matro, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 108, 729 (1998).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 729
-
-
Curotto, E.1
Matro, A.2
Freeman, D.L.3
Doll, J.D.4
-
65
-
-
0000834761
-
-
N. Desmarais, C. Jamorski, F. A. Reuse, and S. N. Khanna, Chem. Phys. Lett. 294, 480 (1998).
-
(1998)
Chem. Phys. Lett.
, vol.294
, pp. 480
-
-
Desmarais, N.1
Jamorski, C.2
Reuse, F.A.3
Khanna, S.N.4
-
66
-
-
85037901757
-
-
Removing the 12 apex atoms from the 55-atom icosahedron breaks eight more Ni-Ni bonds than does removing 12 contiguous nickel surface atoms. The binding of two additional (Formula presented) molecules apparently does not compensate for this loss in Ni-Ni bonding.
-
Removing the 12 apex atoms from the 55-atom icosahedron breaks eight more Ni-Ni bonds than does removing 12 contiguous nickel surface atoms. The binding of two additional (Formula presented) molecules apparently does not compensate for this loss in Ni-Ni bonding.
-
-
-
-
67
-
-
0001602562
-
-
M. Pellarin, B. Baguenard, J. L. Vialle, J. Lermé, M. Broyer, J. Miller, and A. Perz, Chem. Phys. Lett. 217, 349 (1994).
-
(1994)
Chem. Phys. Lett.
, vol.217
, pp. 349
-
-
Pellarin, M.1
Baguenard, B.2
Vialle, J.L.3
Lermé, J.4
Broyer, M.5
Miller, J.6
Perz, A.7
-
68
-
-
85037914240
-
-
The cluster radius and thus the quantity (Formula presented) determined by the structureless packing model increase in validity as the cluster size increases.
-
The cluster radius and thus the quantity (Formula presented) determined by the structureless packing model increase in validity as the cluster size increases.
-
-
-
|